精英家教网 > 高中数学 > 题目详情

【题目】函数,其中常数.

(1)求的最小值;

(2)若,讨论的零点的个数.

【答案】(1)-1(2)见解析

【解析】

(1) 导数为,研究单调性即可得到的最小值;

(2)在其定义域上的导数是,对a分类讨论,数形结合即可明确的零点的个数.

解:(1)在定义域上的导数为.

所以当时,;当时,.

所以的单调递减区间是,单调增区间是.

所以的最小值是.

(2)在其定义域上的导数是

①当时,由(1)可得上是增函数,此时由,可得函数有唯一的零点.

②当时,

并且对于负数,有

又因为,所以,即

所以在区间上存在负数,使得,则在是增函数;在区间是减函数.则

.所以在上,有且仅有个零点;

在区间上,并且是增函数.

所以存在正数,使得在上,是减函数;在上,是增函数.于是有

所以在上,恰有唯一的零点.

所以当时,上恰有三个不同的零点.

综上所述,当时,有唯一的零点;当时,有三个不同的零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为矩形,是以为直角的等腰直角三角形,平面平面

(Ⅰ)证明:平面平面

(Ⅱ)为直线的中点,且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核心素养与抽象能力(指标)、推理能力(指标)、建模能力(指标)的相关性,将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养,若则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同条件下综合指标值也相同的概率;

(2)在这10名学生中任取三人,其中数学核心素养等级是一级的学生人数记为求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一元线性同余方程组问题最早可见于中国南北朝时期(公元世纪)的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”问题,原文如下:有物不知数,三三数之剩二,五五数之剩三,问物几何?即,一个整数除以三余二,除以五余三,求这个整数.设这个整数为,当时, 符合条件的共有_____个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD90°,ADAP4ABBC2NAD的中点.

1)求异面直线PBCD所成角的余弦值;

2)点M在线段PC上且满足,直线MN与平面PBC所成角的正弦值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为,下顶点为,上顶点为是等边三角形.

(Ⅰ)求椭圆的离心率;

(Ⅱ)设直线,过点且斜率为的直线与椭圆交于点 异于点,线段的垂直平分线与直线交于点,与直线交于点,若.

(ⅰ)求的值;

(ⅱ)已知点,点在椭圆上,若四边形为平行四边形,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求在点处的切线方程;

(Ⅱ)若,求函数的单调区间;

(Ⅲ)若对任意的上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点的椭圆的离心率为,椭圆与轴交于两点,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.

(1)求该椭圆的标准方程;

(2)当点异于点时,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列三个正方体中,均为所在棱的中点,过作正方体的截面.在各正方体中,直线与平面的位置关系描述正确的是

A. 平面的有且只有①;平面的有且只有②③

B. 平面的有且只有②;平面的有且只有①

C. .平面的有且只有①;平面的有且只有②

D. 平面的有且只有②;平面的有且只有③

查看答案和解析>>

同步练习册答案