精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2+1,(0<x≤1)
2x,(-1≤x≤0)
且f(m)=
5
4
,则m的值为(  )
A、log2
5
4
B、
1
2
C、-
1
2
D、±
1
2
考点:分段函数的应用
专题:函数的性质及应用
分析:本题中所给的函数是一个分段函数,解此类函数有关的方程的解,要分段求解,每一段上的解的全体即为此方程的根
解答: 解:由题意,令m2+1=
5
4
,解得m=±
1
2
,又0<m≤1故m=
1
2
是方程的根
令2m=
5
4
,解得m=log2
5
4
>0,与-1≤m≤0矛盾,此时无解
综上知,方程的根是m=
1
2

故选:B.
点评:本题考查已知函数值求自变量,是一个解与分段函数有关的方程的题,解此类题的关键是掌握其解题技巧,分段求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若z=sinθ-
3
5
+i(cosθ-
4
5
)是纯虚数,则tan(θ-π)的值为(  )
A、
3
4
B、
4
3
C、-
3
4
D、-
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinAsinB<cosAcosB,则这个三角形的形状是(  )
A、锐角三角形
B、钝角三角形
C、直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

求过点A(-2,1)B(2,3),且在两坐标上截距之和为4的圆的方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cos25°,sin25°),
b
=(cos20°,sin20°),若
c
=
a
+t
b
(t∈R)
,则|
c
|的最小值为(  )
A、
2
B、1
C、
2
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E:y2=4x,点F(a,0),直线l:x=-a(a>0).
(Ⅰ)P为直线l上的点,R是线段PF与y轴的交点,且点Q满足RQ⊥FP,PQ⊥l.当a=1时,试问点Q是否在抛物线E上,并说明理由;
(Ⅱ)过点F的直线交抛物线E于A,B两点,直线OA,OB分别与直线l交于M,N两点(O为坐标原点),求证:以MN为直径的圆恒过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知动点M(x,y),点A(0,1),B(0,-1),D(1,0),点N与点M关于直线y=x对称,且
AN
BN
=
1
2
x2
.直线l是过点D的任意一条直线.
(1)求动点M所在曲线C的轨迹方程;
(2)设直线l与曲线C交于G、H两点,且|GH|=
3
2
2
,求直线l的方程;
(3)(理科)若直线l与曲线C交于G、H两点,与线段AB交于点P(点P不同于点O、A、B),直线GB与直线HA交于点Q,求证:
OP
OQ
是定值.
(文科) 设直线l与曲线C交于G、H两点,求以|GH|的长为直径且经过坐标原点O的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

100
k=1
(x+1)k=a0+a1x+a2x2+a3x3+…+a100x
 100
 
,则
a4
a5
=(  )
A、
2
49
B、
5
97
C、
1
16
D、
7
95

查看答案和解析>>

科目:高中数学 来源: 题型:

一个人以每秒6米的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人的前进方向相同)汽车在时间t内的路程s=
1
2
t2米,那么此人
A.可在7秒内追上汽车
B.可在9秒内追上汽车
C.不能追上汽车,但其间最近距离为14米
D.不能追上汽车,但其间最近距离为7米
解:∵汽车在时刻t的速度为v(t)=t米/秒 
∴a=
v(t)
t
=
t
t
=1m/s2
由此判断为匀加速运动
再设人于x秒追上汽车,有6x-25=
1
2
ax2    ①
∵x无解,因此不能追上汽车
①为一元二次方程,求出最近距离为7米
这一结论是怎么解出来的,请详细解答.

查看答案和解析>>

同步练习册答案