精英家教网 > 高中数学 > 题目详情
已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:
①f(0)f(1)>0;
②f(0)f(1)<0;
③f(0)f(3)>0;
④f(0)f(3)<0;
⑤abc<4;
⑥abc>4.
其中正确结论的序号是(  )
A.①③⑤B.①④⑥C.②③⑤D.②④⑥
求导函数可得f′(x)=3x2-12x+9=3(x-1)(x-3)
∴当1<x<3时,f'(x)<0;当x<1,或x>3时,f'(x)>0
所以f(x)的单调递增区间为(-∞,1)和(3,+∞)
               单调递减区间为(1,3)
所以f(x)极大值=f(1)=1-6+9-abc=4-abc,
       f(x)极小值=f(3)=27-54+27-abc=-abc
要使f(x)=0有三个解a、b、c,那么结合函数f(x)草图可知:
a<1<b<3<c
及函数有个零点x=b在1~3之间,所以f(1)=4-abc>0,且f(3)=-abc<0
所以0<abc<4
∵f(0)=-abc
∴f(0)<0
∴f(0)f(1)<0,f(0)f(3)>0
故答案为:②③⑤
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(
13
,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,则f(2013)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3x2+a(a为常数) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步练习册答案