精英家教网 > 高中数学 > 题目详情
7.在△ABC中,内角A,B,C对边的边长分别a,b,c,f(x)=2sinxcos(x+A)+sin(B+C)(x∈R),函数f(x)的图象关于点$({\frac{π}{3},0})$对称.
(I)求A;
(II)若b=6,△ABC的面积为$6\sqrt{3}$,求$\overrightarrow{AC}•\overrightarrow{CB}$的值.

分析 (Ⅰ)根据两角和的正余弦公式及二倍角的公式进行化简,便可得出f(x)=sin(2x+A),根据f(x)的图象关于点$(\frac{π}{3},0)$对称,即可得出$f(\frac{π}{3})=0$,从而求出A=$\frac{π}{3}$;
(Ⅱ)由三角形的面积公式即可求出c=4,由余弦定理即可求出a,及cosC的值,然后进行数量积的计算即可.

解答 解:(Ⅰ)∵f(x)=2sinxcos(x+A)+sin(B+C)
=2sinx(cosxcosA-sinxsinA)+sinA
=2sinxcosxcosA-2sin2xsinA+sinA
=sin2xcosA+cos2xsinA
=sin(2x+A);
因为函数f(x)的图象关于点$(\frac{π}{3},0)$对称;
所以$f(\frac{π}{3})=0$;
即$sin(\frac{2π}{3}+A)=0$,又∵0<A<π;
∴$\frac{2π}{3}+A=π$;
∴$A=\frac{π}{3}$;
(Ⅱ)∵b=6,△ABC的面积为$6\sqrt{3}$;
∴$\frac{1}{2}•6csin\frac{π}{3}=6\sqrt{3}$;
∴c=4;
∴${a}^{2}={6}^{2}+{4}^{2}-2•6•4cos\frac{π}{3}=28$;
∴$a=2\sqrt{7}$,$cosC=\frac{{{{(2\sqrt{7})}^2}+{6^2}-{4^2}}}{{2×2\sqrt{7}×6}}=\frac{{2\sqrt{7}}}{7}$;
∴$\overrightarrow{AC}•\overrightarrow{CB}=6×2\sqrt{7}cos(π-C)=12\sqrt{7}×(-\frac{{2\sqrt{7}}}{7})=-24$.

点评 考查两角和的正余弦公式,二倍角公式,函数图象上的点的坐标和函数解析式的关系,以及三角形面积公式,余弦定理,数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知圆C:x2+y2-4x-2y+1=0上存在两个不同的点关于直线x+ay-1=0对称,过点A(-4,a)作圆C的切线,切点为B,则|AB|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若直线l经过A(2,1),B(1,-m2)(m∈R)两点,则直线l的倾斜角α的取值范围是(  )
A.0≤α≤$\frac{π}{4}$B.$\frac{π}{2}$<α<πC.$\frac{π}{4}$≤α<$\frac{π}{2}$D.$\frac{π}{2}$<α≤$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某市教育局随机调查了300名高中学生周末的学习时间(单位:小时),制成了如图所示的频率分布直方图,其中学习时间的范围是[0,30],样本数据分组为,[0,5),[5,10),[10,15),[15,20),[20,25),[25,30],根据直方图,这300名高中生周末的学习时间是[5,15)小时的人数是(  )
A.15B.27C.135D.165

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数$f(x)=\left\{\begin{array}{l}2-|x|,x≤2\\{(x-2)^2},x>2\end{array}\right.$,若方程f(x)=t恰有3个不同的实数根,则实数t的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知一家电子公司生产某种电子产品的月固定成本为20万元,每生产1千件需另投入5.4万元,设该公司一月内生产该电子产品x千件能全部销售完,每千件的销售收入为g(x)万元,且g(x)=$\left\{\begin{array}{l}{13.5-\frac{1}{30}{x}^{2}(0<x≤10)}\\{\frac{168}{x}-\frac{2000}{3{x}^{2}}(x>10)}\end{array}\right.$
(Ⅰ)写出月利润y(万元)关于月产量x(千件)的函数解析式;
(Ⅱ)月产量为多少千件时,该公司在这一产品的生产中所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f'(x)=6x+2,数列{an}的前n项和为Sn,点$({n,{S_n}})({n∈{N^*}})$均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式;
(II)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,Tn是数列{bn}的前n项和,若Tn=m对所有n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.命题“?x∈R,|x|+x≥0”的否定是?x∈R,|x|+x<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某超市选取了5个月的销售额和利润额,资料如表:
销售额x(千万元)35679
利润额y(百万元)23345
(1)求利润额y对销售额x的回归直线方程;
(2)当销售额为4(千万元)时,估计利润额的大小.

查看答案和解析>>

同步练习册答案