精英家教网 > 高中数学 > 题目详情

【题目】已知a,b,c分别是△ABC的角A,B,C所对的边,且c=2,C=
(1)若△ABC的面积等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.

【答案】
(1)解:∵c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcosC,

∴4=a2+b2﹣ab,

= ,化为ab=4.

联立 ,解得a=2,b=2.


(2)解:∵sinC=sin(B+A),sinC+sin(B﹣A)=2sin2A,

∴sin(A+B)+sin(B﹣A)=2sin2A,

2sinBcosA=4sinAcosA,

当cosA=0时,解得A=

当cosA≠0时,sinB=2sinA,

由正弦定理可得:b=2a,

联立 ,解得 ,b=

∴b2=a2+c2

,∴

综上可得:A=


【解析】(1)c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab,利用三角形面积计算公式 = ,即ab=4.联立解出即可.(2)由sinC=sin(B+A),sinC+sin(B﹣A)=2sin2A,可得2sinBcosA=4sinAcosA.当cosA=0时,解得A= ;当cosA≠0时,sinB=2sinA,由正弦定理可得:b=2a,联立解得即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足a3=5,a10=﹣9.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求{an}的前n项和Sn及使得Sn最大的序号n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,B1 C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4一4:坐标系与参数方程

已知曲线的参数方程是 (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)写出的极坐标方程和的直角坐标方程;

(2)已知点的极坐标分别为,直线与曲线相交于两点,射线

与曲线相交于点,射线与曲线相交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的极值点,求实数的值;

(2)若上为增函数,求实数的取值范围;

(2)若使方程有实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足 =1,公差d∈(﹣1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(
A.(
B.[ ]
C.(
D.[ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下问题:
①求面积为1的正三角形的周长;
②求键盘所输入的三个数的算术平均数;
③求键盘所输入的两个数的最小数;
④求函数当自变量取时的函数值.
其中不需要用条件语句来描述算法的问题有(  )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是梯形, ,侧面底面.

(1)求证:平面平面

(2)若,且三棱锥的体积为,求侧面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系 为坐标原点曲线 为参数),在以平面直角坐标系的原点为极点, 轴的正半轴为极轴,有相同单位长度的极坐标系中,直线 .

(Ⅰ)求曲线的普通方程和直线的直角坐标方程;

()求与直线平行且与曲线相切的直线的直角坐标方程

查看答案和解析>>

同步练习册答案