精英家教网 > 高中数学 > 题目详情

【题目】某乐园按时段收费,收费标准为:每玩一次不超过1小时收费10元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算).现有甲、乙二人参与但都不超过4小时,甲、乙二人在每个时段离场是等可能的.为吸引顾客,每个顾客可以参加一次抽奖活动.
(1)用(10,10)表示甲乙玩都不超过1小时的付费情况,求甲、乙二人付费之和为44元的概率;
(2)抽奖活动的规则是:顾客通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该顾客中奖;若电脑显示“谢谢”,则不中奖,求顾客中奖的概率.

【答案】
(1)

解:设甲付费a元,乙付费b元,其中a,b=10,18,26,34.

则甲、乙二人的费用构成的基本事件空间为:

(10,10),(10,18),(10,26),(10,34),(18,10),(18,18),(18,26),(18,34),

(26,10),(26,18),(26,26),(26,34),(34,10),(34,18),(34,26),(34,34)共16种情形.

其中,(10,34),(18,26),(26,18),(34,10)这4种情形符合题意.

故“甲、乙二人付费之和为44元”的概率为


(2)

解:由已知0≤x≤1,0≤y≤1点(x,y)如图的正方形OABC内,

由条件 ,得到的区域为图中阴影部分,

由x﹣2y+1=0,令x=0得 ;令x=1得y=1;

由条件满足的区域面积

设顾客中奖的事件为N,则顾客中奖的概率


【解析】(1)设甲付费a元,乙付费b元,其中a,b=10,18,26,34,由此利用列举法能求出“甲、乙二人付费之和为44元”的概率.(2)由已知0≤x≤1,0≤y≤1点(x,y)在正方形OABC内,作出条件 的区域,由此能求出顾客中奖的概率.
【考点精析】掌握程序框图是解答本题的根本,需要知道程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a为实数,p:点M(1,1)在圆(x+a)2+(y﹣a)2=4的内部; q:x∈R,都有x2+ax+1≥0.
(1)若p为真命题,求a的取值范围;
(2)若q为假命题,求a的取值范围;
(3)若“p且q”为假命题,且“p或q”为真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC= ,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x| <2x<4},B={x|0<log2x<2}.
(1)求A∩B和A∪B;
(2)记M﹣N={x|x∈M,且xN},求A﹣B与B﹣A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解用户对其产品的满意度,从某地区随机调查了100个用户,得到用户对产品的满意度评分频率分布表如下:

组别

分组

频数

频率

第一组

(50,60]

10

0.1

第二组

(60,70]

20

0.2

第三组

(70,80]

40

0.4

第四组

(80,90]

25

0.25

第五组

(90,100)

5

0.05

合计

100

1


(1)根据上面的频率分布表,估计该地区用户对产品的满意度评分超过70分的概率;
(2)请由频率分布表中数据计算众数、中位数,平均数,根据样本估计总体的思想,若平均分低于75分,视为不满意.判断该地区用户对产品是否满意?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E为BC的中点,点M,N分别为棱DD1 , A1D1的中点.

(1)求证:平面CMN∥平面A1DE;
(2)求证:平面A1DE⊥平面A1AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x﹣4y+1=0.
(1)求过点M(3,1)的圆C的切线方程;
(2)若直线l:ax﹣y+4=0与圆C相交于A,B两点,且弦AB的长为 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题:“x∈{x|﹣1≤x≤1},都有不等式x2﹣x﹣m<0成立”是真命题.
(1)求实数m的取值集合B;
(2)设不等式(x﹣3a)(x﹣a﹣2)<0的解集为A,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面积.

查看答案和解析>>

同步练习册答案