精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中, 为正三角形, , 为棱的中点.

(1)求证:平面平面;

(2)若直线与平面所成角为,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:

本题主要考查线面、面面垂直的判定与性质、利用空间向量求二面角(1)

可得为平行四边形,易得,又,可得平面,则结论易得(2)由题意证明,建立空间直角坐标系,求出,利用向量的夹角公式求解即可

试题解析:

(1)

中点,

所以

为平行四边形,

为正三角形,

从而

平面

平面

平面平面

(2)因为

所以

所以

平面

因此与平面所成的角,

,所以

建立如图所示的空间直角坐标系

AD=4,则B(800)P(02)E(41)

所以

为平面的法向量,

1为平面的一个法向量,

所以

由图形知二面角为钝角,

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)研究函数的极值点;

(2)当时,若对任意的,恒有,求的取值范围;

(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还升, 升, 升,1斗为10升,则下列判断正确的是( )

A. 依次成公比为2的等比数列,且

B. 依次成公比为2的等比数列,且

C. 依次成公比为的等比数列,且

D. 依次成公比为的等比数列,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线C的顶点是原点O,以x轴为对称轴,且经过点P(1,2).

(1)求抛物线C的方程;

设点AB在抛物线C上,直线PAPB分别与y轴交于点MN,|PM|=|PN|.求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中=2.71828…为自然数的底数.

(1)当时,讨论函数的单调性;

(2)当时,求证:对任意的 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调区间;

(2)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【题目】【2018江西莲塘一中、临川二中高三上学期第一次联考二次函数的图象过原点,对,恒有成立,设数列满足

(I)求证:对,恒有成立;

(II)求函数的表达式;

(III)设数列项和为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数的单调区间;

2)若函数既有一个极小值又有一个极大值,求的取值范围;

3)若存在,使得当时, 的值域是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆上一点关于原点的对称点为 为其右焦点,若,设,且,则该椭圆离心率的最大值为(

A. B. C. D. 1

查看答案和解析>>

同步练习册答案