【题目】已知函数f(x)= ,若函数f(x)有最大值M,则M的取值范围是( )
A.( ,0)
B.(0, ]
C.(0, ]
D.( , ]
【答案】B
【解析】解:若f(x)有最大值,显然f(x)在(a,+∞)不单调递增,故b≤0,且ab﹣1≤f(a),
当x≤a时,f(x)=﹣(x+1)ex,
∴f′(x)=﹣(x+2)ex,
令f′(x)=﹣(x+2)ex=0,解得x=﹣2
∴当x<﹣2时,f′(x)>0,函数f(x)单调递增,
当x>﹣2时,f′(x)<0时,函数f(x)单调递减,
当x=﹣2时,f(x)取得最大值f(﹣2)= ,
∴当a≥﹣2时,f(x)max= ,
当a<﹣2时,f(x)max=f(a),
又x→﹣∞时,f(x)→0,
∴0<M≤ ,
故选B.
【考点精析】掌握函数的最值及其几何意义是解答本题的根本,需要知道利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值.
科目:高中数学 来源: 题型:
【题目】已知函数在区间上的最大值为4,最小值为1.
(1)求实数、的值;
(2)记,若在上是单调函数,求实数的取值范围;
(3)对于函数,用,1,2,,,将区间任意划分成个小区间,若存在常数,使得和式对任意的划分恒成立,则称函数为上的有界变差函数.记,试判断函数是否为在上的有界变差函数?若是,求的最小值;若不是,请说明理由.
(参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面ADD1A1和侧面CDD1C1都是矩形,BC∥AD,△ABD是边长为2的正三角形,E,F分别为AD,A1D1的中点.
(Ⅰ)求证:DD1⊥平面ABCD;
(Ⅱ)求证:平面A1BE⊥平面ADD1A1;
(Ⅲ)若CF∥平面A1BE,求棱BC的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且bcosC=(3a﹣c)cosB.D为AC边的中点,且BD=1,则△ABD面积的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2= ,且直线l经过曲线C的左焦点F. ( I )求直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2lnx+x2﹣2ax(a>0). (I)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2(x1<x2),且f(x1)﹣f(x2)≥ ﹣2ln2恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求证:平面EBD⊥平面BCF;
(Ⅱ)求点B到平面ECD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S= .现有周长为2 + 的△ABC满足sinA:sinB:sinC=( ﹣1): :( +1),试用以上给出的公式求得△ABC的面积为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列 满足:① ;②所有项 ;③ .
设集合 ,将集合 中的元素的最大值记为 .换句话说, 是
数列 中满足不等式 的所有项的项数的最大值.我们称数列 为数列 的
伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)若数列 的伴随数列为1,1,1,2,2,2,3,请写出数列 ;
(2)设 ,求数列 的伴随数列 的前100之和;
(3)若数列 的前 项和 (其中 常数),试求数列 的伴随数列 前 项和 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com