【题目】若数列满足:对任意,都有,则称为“紧密”数列.
(1)设某个数列为“紧密”数列,其前项依次为,求的取值范围;
(2)若数列的前项和,判断是否为“紧密”数列,并说明理由;
(3)设是公比为的等比数列,前项和为,且与均为“紧密”数列,求实数的取值范围.
【答案】(1);(2)是 “紧密”数列,理由见详解;(3)
【解析】
(1)根据题意,得到,且,求解,即可得出结果;
(2)根据,求出,计算的范围,即可得出结论;
(3)先讨论,易得满足题意;再讨论,得到,,根据为“紧密”数列,得到或,分别根据这两种情况,计算的范围,即可得出结果.
(1)若数列为“紧密”数列,则,且,解得:;
即的取值范围为;
(2)数列为“紧密”数列;理由如下:
数列的前项和,
当时,;
当时,,
又,即满足,
因此,
所以对任意,,
所以,
因此数列为“紧密”数列;
(3)因为数列是公比为的等比数列,前项和为,
当时,有,,
所以,,满足题意;
当时,,,因为为“紧密”数列,
所以,即或,
当时,,
,
所以,满足为“紧密”数列;
当时,,不满足为“紧密”数列;
综上,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】以直角坐标系xOy的坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程是,曲线C2的参数方程是(θ为参数).
(1)写出曲线C1,C2的普通方程;
(2)设曲线C1与y轴相交于A,B两点,点P为曲线C2上任一点,求|PA|2+|PB|2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,点为半径为千米的圆形海岛的最东端,点为最北端,在点的正东千米处停泊着一艘缉私艇,某刻,发现在处有一小船正以速度 (千米/小时)向正北方向行驶,已知缉私艇的速度为(千米/小时) .
(1)为了在最短的时间内拦截小船检查,缉私艇应向什么方向行驶? (精确到)
(2)海岛上有一快艇要为缉私艇送去给养,问选择海岛边缘的哪一点出发才能行程最短? (如图2建立坐标系, 用坐标表示点的位置)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了迎接2019年全国文明城市评比,某市文明办对市民进行了一次文明创建知识的网络问卷调查.每一位市民有且仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如下表所示:
组别 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以认为,此次问卷调查的得分服从正态分布,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求;
(2)在(1)的条件下,文明办为此次参加问卷调查的市民制定如下奖励方案:
(i)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
(ii)每次获赠的随机话费和对应的概率为:
获赠的随机话费(单位:元) | 20 | 40 |
概率 |
现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:①;
②若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为元,低于箱按原价销售,不低于箱则有以下两种优惠方案:①以箱为基准,每多箱送箱;②通过双方议价,买方能以优惠成交的概率为,以优惠成交的概率为.
甲、乙两单位都要在该厂购买箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
某单位需要这种零件箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有( )
①存在点E使得直线SA⊥平面SBC;
②平面SBC内存在直线与SA平行
③平面ABCE内存在直线与平面SAE平行;
④存在点E使得SE⊥BA.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com