精英家教网 > 高中数学 > 题目详情

【题目】下列各对函数中,相同的是(
A.f(x)=lgx2 , g(x)=2lgx
B.f(x)=lg ,g(x)=lg(x+1)﹣lg(x﹣1)
C.f(u)= ,g(v)=
D.f(x)=x,g(x)=

【答案】C
【解析】解:对于A:f(x)=lgx2 , g(x)=2lgx两个函数的定义域不同,不是相同的函数; 对于B:f(x)=lg ,g(x)=lg(x+1)﹣lg(x﹣1)函数底的定义域不同,不是相同的函数;
对于C:f(u)= ,g(v)= ,满足相同函数的要求,是相同的函数;
对于D:f(x)=x,g(x)= ,定义域相同,都是对应关系以及值域不同,不是相同的函数.
故选C.
【考点精析】掌握判断两个函数是否为同一函数是解答本题的根本,需要知道只有定义域和对应法则二者完全相同的函数才是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是我国2009年至2015年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.
参考数据: yi=9.32, tiyi=40.17, =0.55, ≈2.646.
参考公式:相关系数r= =
回归方程 = + t中斜率和截距的最小二乘估计公式分别为: = = t.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=x+sin|x|,x∈[﹣π,π]的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0),短轴长2,两焦点分别为F1 , F2 , 过F1的直线交椭圆C于M,N两点,且△F2MN的周长为8.

(1)求椭圆C的方程;
(2)直线l与椭圆C相交于A,B点,点D为椭圆C上一点,四边形AOBD为矩形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在五面体中, , ,

,平面平面.

(1) 证明: 直线平面

(2) 已知为棱上的点,试确定点位置,使二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年3月29日,中国自主研制系全球最大水陆两栖飞机AG600将于2017年5月计划首飞,AG600飞机的用途很多,最主要的是森林灭火、水上救援、物资运输、海洋探测、根据灾情监测情报部门监测得知某个时间段全国有10起灾情,其中森林灭火2起,水上救援3起,物资运输5起,现从10起灾情中任意选取3起.

(1)求三种类型灾情中各取到1个的概率;

(2)设表示取到的森林灭火的数目,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ ),x∈R的图象,只需将函数y=sin2x,x∈R的图象上所有的点(
A.向左平行移动 个单位长度
B.向右平行移动 个单位长度
C.向左平行移动 个单位长度
D.向右平行移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x+sinxcosx+cos2x,x∈R. 求:
(1)f()的值;
(2)函数f(x)的最小值及相应x值;
(3)函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】程序框图如图所示,现输入如下四个函数:f(x)= ,f(x)=x4 , f(x)=2x , f(x)=x﹣ ,则可以输出的函数是(
A.f(x)=
B.f(x)=x4
C.f(x)=2x
D.f(x)=x﹣

查看答案和解析>>

同步练习册答案