精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足.

(1)求

(2)设求数列通项公式;

(3)设不等式成立时,求实数取值范围.

【答案】(1);(2);(3).

【解析】

试题分析:(1)由已知,整理可得递推公式,从而可算出;(2)由(1)递推公式整理可得,即,且,所以数列首项,公差的等差数列,所以;(3)由(1)、(2)可求得,而

所以,则,由条件可知成立即可满足条件,从而构造函数,通过函数的性质可得解当时,成立.

试题解析:1

.……………………………………6

(2)

数列首项,公差的等差数列.

.…………………………6

(3)由于所以从而,则.

条件可知成立即可满足条件,

时,成立;

时,由二次函数的性质知不可能成立;

时,对称轴单调递减函数,

时,成立.

上知:时,成立.…………………………………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从数列中抽出一项,依原来的顺序组成的新叫数列的一个子列.

(1)写出数列的一个是等比数列的子列

(2)若是无穷等比数列,首项,公比,则数列是否存在一个子列,为无穷等差数列?若存在,写出该子列的通项公式;若不存在,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数满足不等式函数极值点.

(1”为假命题,“真命题,求实数取值范围;

(2已知. ”为真命题,并记为必要不充分条件,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)若函数图象在点处的切线方程为,求的值;

)求函数的极值;

)若,且对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】调查表明,高三学生的幸福感与成绩,作业量,人际关系的满意度的指标有极强的相关性,现将这三项的满意度指标分别记为,并对它们进行量化:0表示不满意,1表示基本满意,2表示满意.再用综合指标的值评定高三学生的幸福感等级:若,则幸福感为一级;若,则幸福感为二级;若,则幸福感为三级. 为了了解目前某高三学生群体的幸福感情况,研究人员随机采访了该群体的10名高三学生,得到如下结果:

1在这10名被采访者中任取两人,求这两人的成绩满意度指标相同的概率;

2从幸福感等级是一级的被采访者中任取一人,其综合指标为,从幸福感等级不是一级的被采访者中任取一人,其综合指标为,记随机变量,求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线,0为坐标原点.

(1)当为何值时,曲线表示圆;

(2)若曲线与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段 后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,并补全这个频率分布直方图;

(2)估计这次考试的及格率(60分及以上为及格)和平均分;

(3)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了促进学生的全面发展,郑州市某中学重视学生社团文化建设,现用分层抽样的方法从“话剧社”,“创客社”、“演讲社”三个金牌社团中抽6人组成社团管理小组,有关数据见下表(单位:人):

社团名称

成员人数

抽取人数

话剧社

50

a

创客社

150

b

演讲社

100

c

(1)求的值;

(2)若从“话剧社”,“创客社”,“演讲社”已抽取的6人中任意抽取2人担任管理小组组长,求这2人来自不同社团的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,底面是梯形,

(1)求证:平面平面

(2)设为棱上一点, ,试确定的值使得二面角

查看答案和解析>>

同步练习册答案