精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴为非负半轴为极轴,与坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(1)若直线与曲线有公共点,求倾斜角的取值范围;

(2)设为曲线上任意一点,求的取值范围.

【答案】(1)(2)

【解析】分析:(1)利用互化公式即可把曲线C的极坐标方程ρ2﹣2ρcosθ﹣3=0化为直角坐标方程.直线l的参数方程为(t为参数),代入曲线C的直角坐标方程可得t2﹣8tcosα+12=0,根据直线l与曲线C有公共点,可得△≥0,利用三角函数的单调性即可得出.

(2)曲线C的方程x2+y2﹣2x﹣3=0可化为(x﹣1)2+y2=4,参数方程为,(θ为参数),设M(x,y)为曲线上任意一点,可得x+y=1+2cosθ+2sinθ,利用和差公式化简即可得出取值范围.

详解:(1)将曲线的极坐标方程化为直角坐标方程为

直线的参数方程为为参数),

将参数方程代入,整理

∵直线与曲线有公共点,∴

,或,∵

的取值范围是

(2)曲线的方程可化为

其参数方程为为参数),

为曲线上任意一点,

的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)设直线l过点(23)且与直线2x+y+1=0垂直,lx轴,y轴分别交于AB两点,求|AB|

2)求过点A4-1)且在x轴和y轴上的截距相等的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论

(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.

(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.

(3)若两个变量的线性相关性越强,则相关系数的值越接近于1.

(4)对ABC三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.

则正确的个数是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△AnBnCn的三边长分别为an , bn , cn , △AnBnCn的面积为Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an ,则(
A.{Sn}为递减数列
B.{Sn}为递增数列
C.{S2n1}为递增数列,{S2n}为递减数列
D.{S2n1}为递减数列,{S2n}为递增数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为 ,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形, 平面分别为的中点,且.

(1)求证:平面平面

(2)求证:平面P

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

(1)的值

(2)求函数的单调区间

(3)设函数,且在区间内为单调递增函数求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+(e﹣a)x﹣b,其中e为自然对数的底数.若不等式f(x)≤0恒成立,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,若,且的图象相邻的对称轴间的距离不小于.

(1)求的取值范围.

(2)若当取最大值时, ,且在中, 分别是角的对边,其面积,求周长的最小值.

查看答案和解析>>

同步练习册答案