精英家教网 > 高中数学 > 题目详情

【题目】如图,直线l⊥平面α,垂足为O,已知△ABC中,∠ABC为直角,AB=2,BC=1,该直角三角形做符合以下条件的自由运动:(1)A∈l,(2)B∈α.则C、O两点间的最大距离为

【答案】
【解析】解:将原问题转化为平面内的最大距离问题解决,
以O为原点,OA为y轴,OB为x轴建立直角坐标系,如图.
设∠ABO=θ,C(x,y),则有:
x=ABcosθ+BCsinθ
=2cosθ+sinθ,
y=BCcosθ
=cosθ.
∴x2+y2=4cos2θ+4sinθcosθ+1
=2cos2θ+2sin2θ+3
=2 sin(2θ+ )+3,
当sin(2θ+ )=1时,x2+y2最大,为2 +3,
则C、O两点间的最大距离为
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos(ωx+ )(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0, ],f(5α+ )=﹣ ,f(5β﹣ )= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,椭圆上任意一点到右焦点距 离的最大值为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点作直线与曲线交于两点,点满足为坐标原点),求四边形面积的最大值,并求此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(2cos2x,sinx), =(1,2cosx). (Ⅰ)若 且0<x<π,试求x的值;
(Ⅱ)设f(x)= ,试求f(x)的对称轴方程和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2 , 使得不等式f(x1)>f(x2)成立.设数列{an}的前n项和Sn=f(n).
(1)求f(x)的表达式;
(2)求数列{an}的通项公式;
(3)设 ,cn= ,{cn}的前n项和为Tn , 若Tn>2n+t对任意n∈N,n≥2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,BC⊥平面APC,AB=2 ,AP=PC=CB=2.

(1)求证:AP⊥平面PBC;
(2)求二面角P﹣AB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)与直线x+y﹣1=0相交于A、B两点,若a∈[ ],且以AB为直径的圆经过坐标原点O,则椭圆离心率e的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中, 相交于点 平面

(I)求证: 平面

(II)当直线与平面所成的角为时,求二面角的余弦角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥P﹣ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且PA=AB=2.
(Ⅰ)证明:BC⊥平面AMN;
(Ⅱ)求三棱锥N﹣AMC的体积;
(Ⅲ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案