精英家教网 > 高中数学 > 题目详情

(本题12分)

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。

(Ⅰ)若∠PAB=30°,求以MN为直径的圆方程;

(Ⅱ)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。

 

【答案】

(Ⅰ);(Ⅱ)设点P的坐标为, MN的中点坐标为

以MN为直径的圆截x轴的线段长度为

为定值。∴⊙必过⊙O 内定点

【解析】

试题分析:建立直角坐标系,⊙O的方程为,……2分

直线L的方程为

(Ⅰ)∵∠PAB=30°,∴点P的坐标为

。将x=4代入,得

∴MN的中点坐标为(4,0),MN=。∴以MN为直径的圆的方程为

同理,当点P在x轴下方时,所求圆的方程仍是。……6分

(Ⅱ)设点P的坐标为,∴),∴

,将x=4代入,得

。∴,MN=

MN的中点坐标为。……10分

以MN为直径的圆截x轴的线段长度为

为定值。∴⊙必过⊙O 内定点。……12分

考点:圆的方程的求法;直线与圆的位置关系;直线方程的点斜式。

点评:要求圆的方程,只需确定圆心和半径即可。本题的计算量较大,在计算的过程中一定要仔细、认真,避免出现计算错误。

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届浙江省高二9月质量检测文科数学试卷(解析版) 题型:解答题

(本题12分)如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,

AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E

与直线AA1的交点。

(1)证明:(i)EF∥A1D1

(ii)BA1⊥平面B1C1EF;

(2)求BC1与平面B1C1EF所成的角的正弦值。

 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二文科数学竞赛试卷(解析版) 题型:解答题

(本题12分)如图所示,在直四棱柱中, ,点是棱上一点.

(1)求证:

(2)求证:

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高三全真模拟考试数学文卷 题型:解答题

((本题12分)如图所示,在直四棱柱中, ,点是棱上一点

(1)求证:

(2)求证:

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012年山东省济宁市高二上学期期中考试文科数学 题型:解答题

(本题12分)如图1,在直角梯形ABCD中,∠ADC=90°,CDABAB=4,ADCD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体DABC,如图2所示.

(Ⅰ)求证:BC⊥平面ACD

(Ⅱ)求二面角ACDM的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2013届四川省巴中市四县中高二上学期期末考试理科数学 题型:解答题

((本题12分)如图2,在棱长为1的正方体ABCD—A1B1C1D1中,点E、F、G分别是DD1、BD、BB1的中点。

(Ⅰ)求直线EF与直线CG所成角的余弦值;

 (Ⅱ)求直线C1C与平面GFC所成角的正弦值;

     (Ⅲ)求二面角E—FC—B的余弦值。

 

 

 

 

 

查看答案和解析>>

同步练习册答案