精英家教网 > 高中数学 > 题目详情

【题目】已知函数为偶函数,且函数的图象的两相邻对称轴间的距离为.

1)求的值;

2)将函数的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,求函数的单调递减区间.

【答案】(1)(2).

【解析】

1)首先利用函数是偶函数求得的值,再根据对称轴间的距离是半个周期求的值,求得解析式后再求

2)首先利用平移,伸缩变换求得函数,再令,求得函数的单调递减区间.

1)因为为偶函数,所以,所以.,所以,所以.

有函数 的图象的两相邻对称轴间的距离为,所以

所以,所以

所以.

2)将的图象向右平移个单位长度后,得到函数的图象,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到的图象,

所以.

时,单调递减.

所以函数的单调递减区间是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是同一平面内的三个向量,下列命题中正确的是(

A.

B.,则

C.两个非零向量,若,则共线且反向

D.已知,且的夹角为锐角,则实数的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 平面 为线段上一点, 的中点.

(1)证明:

(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816其中第一项是,接下来的两项是,再接下来的三项是,依此类推那么该数列的前50项和为  

A. 1044 B. 1024 C. 1045 D. 1025

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】恩格尔系数是食品支出总额占个人消费支出总额的比重.恩格尔系数越小,即家庭的消费支出中用于购买食物的支出所占比例越小,更多的消费用于精神追求,标志着家庭越富裕.恩格尔系数达59%以上为贫困,5059%为温饱,4050%为小康,3040%为富裕,低于30%为最富裕.下图给出了19802017年我国城镇居民和农村居民家庭恩格尔系数的变化统计图,对所列年份进行分析,则下列结论正确的是(

A.农村和城镇居民家庭消费支出呈下降趋势

B.农村居民家庭比城镇居民家庭用于购买食品的支出更多

C.1995年我国农村居民初步达到小康标准

D.2015年城镇和农村居民食品支出占个人消费支出总额之比大于30.6%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥两两垂直,是三棱锥外接球面上一动点,则到平面的距离的最大值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意的正整数,总存在正整数,使得数列的前项和,则称回归数列

项和为的数列是否是回归数列?并请说明理由.通项公式为的数列是否是回归数列?并请说明理由;

)设是等差数列,首项,公差,若回归数列,求的值.

)是否对任意的等差数列,总存在两个回归数列,使得成立,请给出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABCA1B1C1中,所有棱长均相等,且AA1⊥平面ABC,点DEF分别为所在棱的中点.

1)求证:EF∥平面CDB1

2)求异面直线EFBC所成角的余弦值;

3)求二面角B1CDB的余弦值.

查看答案和解析>>

同步练习册答案