精英家教网 > 高中数学 > 题目详情
如图1,在等腰△ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′-BCDE.若A′O⊥平面BCDE,则A′D与平面A′BC所成角的正弦值等于(  )
精英家教网
A、
2
3
B、
3
3
C、
2
2
D、
2
4
分析:取DE中点H,则OH⊥OB.以O为坐标原点,OH、OB、OA'分别为x、y、z轴,建立空间直角坐标系,利用向量法能注出A′D与平面A′BC所成角的正弦值.
解答:精英家教网解:取DE中点H,则OH⊥OB.
以O为坐标原点,OH、OB、OA′分别为x、y、z轴,建立空间直角坐标系,
∵等腰△ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点,
∴A′′(0,0,
3
),D(1,-2,0),
AD
=(1,-2,-
3
),
∵平面A′BC的法向量
n
=(1,0,0)

设A′D与平面A′BC所成角为θ,
∴sinθ=|cos<
AD
n
>|=|
1
8
|=
2
4

故选:D.
点评:本题考查直线与平面所成角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在等腰△ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱锥A′-BCDE,其中A′O=
3

(1)证明:A′O⊥平面BCDE;      
(2)求A′D与平面A′BC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广东)如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=
2
,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′-BCDE,其中A′O=
3

(1)证明:A′O⊥平面BCDE;
(2)求二面角A′-CD-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013年普通高等学校招生全国统一考试广东卷理数 题型:044

如图(1),在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=,O为BC的中点.将△ADE沿DE折起,得到如图(2)所示的四棱锥,其中

(Ⅰ)证明:平面BCDE;

(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:2013年广东省高考数学试卷(理科)(解析版) 题型:解答题

如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,,O为BC的中点.将△ADE沿DE折起,得到如图2所示的四棱椎A′-BCDE,其中A′O=
(1)证明:A′O⊥平面BCDE;
(2)求二面角A′-CD-B的平面角的余弦值.

查看答案和解析>>

同步练习册答案