【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.
(1)求证:;
(2)求二面角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;
(2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.
(1)证明:连接,由平行且相等,可知四边形为平行四边形,所以.
由题意易知,,所以,,
因为,所以平面,
又平面,所以.
(2)设,,由已知可得:平面平面,
所以,同理可得:,所以四边形为平行四边形,
所以为的中点,为的中点,所以平行且相等,从而平面,
又,所以,,两两垂直,如图,建立空间直角坐标系,
,,由平面几何知识,得.
则,,,,
所以,,.
设平面的法向量为,由,可得,
令,则,,所以.同理,平面的一个法向量为.
设平面与平面所成角为,
则,所以.
科目:高中数学 来源: 题型:
【题目】已知三棱锥如图的展开图如图2,其中四边形ABCD为边长等于的正方形,和均为正三角形.
(1)证明:平面平面ABC;
(2)若M是PC的中点,点N在线段PA上,且满足,求直线MN与平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为2的菱形,,,平面平面,点为棱的中点.
(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;
(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的极坐标方程为,以极点为原点,极轴所在直线为轴建立直角坐标系.过点作倾斜角为的直线交曲线于,两点.
(1)求曲线的直角坐标方程,并写出直线的参数方程;
(2)过点的另一条直线与关于直线对称,且与曲线交于,两点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:若函数的图象经过变换后所得的图象对应的函数与的值域相同,则称变换是的同值变换,下面给出了四个函数与对应的变换:①, 将函数的图象关于直线作对称变换;②, 将函数的图象关于轴作对称变换;③, 将函数的图象关于点作对称变换;④,将函数的图象关于点作对称变换.其中是的同值变换的有__________(写出所有符合题意的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为的函数满足:(1)对任意,恒有成立;(2)当时,.给出如下结论:
①对任意,有;
②函数的值域为
③存在,使得;
④“函数在区间上单调递减”的充要条件是“存在,使得”.
上述结论正确有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com