精英家教网 > 高中数学 > 题目详情
11.若曲线x2-4x+y2-2y+4=0(y≥1)与直线y=k(x+1)有2个公共点,则k的取值范围是(  )
A.(0,$\frac{1}{2}$]B.($\frac{1}{4}$,$\frac{3}{4}$]C.[$\frac{1}{2}$,$\frac{3}{4}$)D.[$\frac{1}{4}$,1)

分析 曲线x2-4x+y2-2y+4=0(y≥1),可化为曲线(x-2)2+(y-1)2=1(y≥1),求出直线与圆弧相切时,k=$\frac{3}{4}$或0;直线过点(1,1)时,k=$\frac{1}{2}$,即可求出k的取值范围.

解答 解:曲线x2-4x+y2-2y+4=0(y≥1),可化为曲线(x-2)2+(y-1)2=1(y≥1)
直线与圆弧相切时,圆心到直线的距离d=$\frac{|3k-1|}{\sqrt{{k}^{2}+1}}$=1,∴k=$\frac{3}{4}$或0;
直线过点(1,1)时,k=$\frac{1}{2}$,
∴曲线x2-4x+y2-2y+4=0(y≥1)与直线y=k(x+1)有2个公共点,则k的取值范围是[$\frac{1}{2}$,$\frac{3}{4}$).
故选:C.

点评 此题考查了直线与圆相交的性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b=(  )
A.-2或12B.2或-12C.-2或-12D.2或12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.小明一家三口都会下棋,在假期里的每一天中,父母都交替与小明下棋,已知小明胜父亲的概率是$\frac{1}{2}$,胜母亲的概率是$\frac{2}{3}$,且各盘棋之间是相互独立的.
(1)如果共下7盘棋,并且小明与父亲先下,求小明恰胜一盘的概率;
(2)如果共下3盘棋,小明与父亲先下,且规定每胜一盘得1分,每负一盘减1分,求小明最终得分ξ的分布列;
(3)某天父母与小明约定下三盘棋,只要他在三盘中能至少连胜两盘,就给他买新的钢笔,那么小明为了获胜希望更大,他应该先与父亲下,还是先与母亲下?请用计算说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数${f_n}(x)=a{x^n}+bx+c(a,b,c∈R)$
(1)若f1(x)=3x+1,f2(x)为偶函数,求a,b,c的值;
(2)若对任意实数x,不等式$2x≤{f_2}(x)≤\frac{1}{2}{(x+1)^2}$恒成立,求f2(-1)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用更相减损术得111与148的最大公约数为(  )
A.1B.17C.23D.37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列表述中错误的是(  )
A.归纳推理是由特殊到一般的推理B.演绎推理是由一般到特殊的推理
C.类比推理是由特殊到一般的推理D.类比推理是由特殊到特殊的推理

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,三棱锥P-ABC中,△PAB是正三角形,E是AB的中点,AB⊥BC,平面PAB⊥平面ABC.若AB=2,BC=$\sqrt{2}$,则点A到平面PEC的距离是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x|x-m|,x∈R,且f(4)=0.
(1)求实数m的值;
(2)作出函数f(x)的图象并直接写出f(x)单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在等比数列{an}中,a2011a2012a2013=64,则a2012=4.

查看答案和解析>>

同步练习册答案