精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),且x∈[ ,π].
(1)求 及| + |;
(2)求函数f(x)= +| + |的最大值,并求使函数取得最大值时x的值.

【答案】
(1)解: =cos cos ﹣sin sin =cos2x,

= =1.

| + |= = =2|cosx|,

∵x∈[ ,π],∴cosx≤0.

═2cosx


(2)解:由(1)可得:函数f(x)= +| + |

=cos2x﹣2cosx

=2cos2x﹣2cosx﹣1

=

当x=π,cosx=﹣1时,f(x)取得最大值3


【解析】(1)利用数量积的坐标运算、两角和差的余弦公式可得 =cos2x,由 = =1.可得| + |= .(2)由(1)可得:函数f(x)= +| + |=cos2x﹣2cosx= ,利用二次函数、余弦函数的单调性即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知点A(1,0),D(﹣1,0),点B,C在单位圆O上,且∠BOC=
(Ⅰ)若点B( ),求cos∠AOC的值;
(Ⅱ)设∠AOB=x(0<x< ),四边形ABCD的周长为y,将y表示成x的函数,并求出y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(m+2)x+(2m+5)(m≠0)的两个零点分别在区间(﹣1,0)和区间(1,2)内,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,若a9+3a11<0,a10a11<0,且数列{an}的前n项和Sn有最大值,那么Sn取得最小正值时n等于(
A.20
B.17
C.19
D.21

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)讨论函数的单调性;

(2)记,设 为函数图象上的两点,且

(ⅰ)当 时,若处的切线相互垂直,求证:

(ⅱ)若在点处的切线重合,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.

(1)若直线与曲线交于两点,求的值;

(2)设曲线的内接矩形的周长为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增等比数列{an}的第三项、第五项、第七项的积为512,且这三项 分别减去1,3,9后成等差数列.
(1)求{an}的首项和公比;
(2)设Sn=a12+a22+…+an2 , 求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用an表示自然数n的所有因数中最大的那个奇数,例如:9的因数有1,3,9,则a9=9;10的因数有1,2,5,10,则a10=5,记数列{an}的前n项和为Sn , 则S =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|= ,求m的值.

查看答案和解析>>

同步练习册答案