精英家教网 > 高中数学 > 题目详情
若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(1)求f(log2x)的最小值及相应 x的值;
(2)若f(log2x)>f(1)且log2f(x)<f(1),求由x的值组成的集合.
分析:(1)由题意,先由f(log2a)=b,log2f(a)=2(a>0且a≠1),解出a,b的值,得到f(x)的解析式,再由f(log2x)的形式选择配方法求得它的最小值及相应的x的值;
(2)由题意f(log2x)>f(1)且log2f(x)<f(1),解此两不等式即可得到x的值组成的集合.
解答:解:(1)由题意f(x)=x2-x+b
∴f(log2a)=(log2a)2-log2a+b=b
解得log2a=1,即可得a=2
又log2f(a)=2,得f(a)=4
∴a2-a+b=4,将a=2代入,解得b=2
∴f(x)=x2-x+2
∴f(log2x)=(log2x)2-log2x+2=(log2x-
1
2
2+
7
4

∴当log2x=
1
2
,即x=
2
时,f(log2x)的最小值是
7
4

答:f(log2x)的最小值是
7
4
,相应 x的值x=
2

(2)由题意知
(log2x)2-log2x+2>2
log2(x2-x+2)<2

log2x<0或log2x>1
0<x2-x+2<4

0<x<1或x>2
-1<x<2

∴0<x<1
答:由x的值组成的集合是(0,1)
点评:本题考查对数函数图象与性质的综合应用,考查了对数方程的解法,对数不等式的解法及与对数有关的复合函数的最值的求法,涉及到的基本技能较多,解题的关键是熟练掌握对数的单调性及对数的运算,将方程与不等式正确转化求解,属于对数函数有关的综合性较强的题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知x>
12
,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)的定义域为R,若存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立,则称f(x)为F函数.现给出下列函数:
①f(x)=2x;
②f(x)=x2+1;
f(x)=
2
(sinx+cosx)

f(x)=
x
x2-x+1

⑤f(x)是定义在实数集R上的奇函数,且对一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的函数有
①④⑤
①④⑤

查看答案和解析>>

科目:高中数学 来源:郑州二模 题型:解答题

已知x>
1
2
,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年高考数学压轴大题训练:函数与不等式的恒成立问题(解析版) 题型:解答题

已知x>,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年河南省郑州市高考数学二模试卷(理科)(解析版) 题型:解答题

已知x>,函数f(x)=x2,h(x)=2e lnx(e为自然常数).
(Ⅰ)求证:f(x)≥h(x);
(Ⅱ)若f(x)≥h(x)且g(x)≤h(x)恒成立,则称函数h(x)的图象为函数f(x),g(x)的“边界”.已知函数g(x)=-4x2+px+q(p,q∈R),试判断“函数f(x),g(x)以函数h(x)的图象为边界”和“函数f(x),g(x)的图象有且仅有一个公共点”这两个条件能否同时成立?若能同时成立,请求出实数p、q的值;若不能同时成立,请说明理由.

查看答案和解析>>

同步练习册答案