精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x|x﹣a|,若对于任意的x1 , x2∈[﹣2,+∞),x1≠x2 , 不等式 >0恒成立,则实数a的取值范围是

【答案】(﹣∞,﹣4]∪{0}
【解析】解:由题意知,对于任意的x1 , x2∈[﹣2,+∞),x1≠x2
不等式 >0恒成立,
∴f(x)=x|x﹣a|在[﹣2,+∞)上单调递增.
(1)当a≤﹣2时,
若x∈[﹣2,+∞),则f(x)=x(x﹣a)=x2﹣ax,其对称轴为x=
此时 ≤﹣2,所以f(x)在[﹣2,+∞)上是递增的;
即a≤﹣4时满足题意;
(2)当a>﹣2且a≠0时,
①若x∈[a,+∞),则f(x)=x(x﹣a)=x2﹣ax,其对称轴为x= ,所以f(x)在[a,+∞)上是递增的;
②若x∈[﹣2,a),则f(x)=x(a﹣x)=﹣x2+ax,其对称轴为x= ,所以f(x)在[ ,a)上是递减的,
因此f(x)在[﹣2,a)上必有递减区间.
故可知当a>﹣2且a≠0时不成立,故舍去;
(3)当a=0时,可知函数为f(x)=x|x|=
由二次函数的性质可知,符合题意单调递增的要求,故成立
综上,实数a的取值范围是(﹣∞,﹣4]∪{0}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中的值;

(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者命名为“优秀学员”.

(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);

(2)从甲班4名优秀学员中抽取两人,从乙班2名80分以下的学员中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax﹣1,(a为实数),g(x)=lnx﹣x
(1)讨论函数f(x)的单调区间;
(2)求函数g(x)的极值;
(3)求证:lnx<x<ex(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=cos(x+ )图象上所有点的横坐标缩短为原来的 倍,纵坐标不变,得到函数g(x)的图象,则函数g(x)的一个减区间是(
A.[﹣ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于无穷数列,记,若数列满足:“存在,使得只要),必有”,则称数列具有性质.

(Ⅰ)若数列满足判断数列是否具有性质?是否具有性质

(Ⅱ)求证:“是有限集”是“数列具有性质”的必要不充分条件;

(Ⅲ)已知是各项为正整数的数列,且既具有性质,又具有性质,求证:存在整数,使得是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C: + =1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为 ,且经过点(0,1).
(1)求实数a,b的值;
(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2 ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=2an﹣3(﹣1)n(n∈N*).
(1)若bn=a2n﹣1,求证:bn+1=4bn
(2)求数列{an}的通项公式;
(3)若a1+2a2+3a3+…+nan>λ2n对一切正整数n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)若曲线上点处的切线过点,求函数的单调减区间;

(II)若函数在区间内无零点,求实数的最小值.

查看答案和解析>>

同步练习册答案