【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,圆的参数方程为(为参数).以原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程是.
(1)求直线的直角坐标方程与圆的普通方程;
(2)点为直线上的一动点,过点作直线与圆相切于点,求四边形的面积的最小值.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1, ,其中n∈N*.
(1)设,求证:数列{bn}是等差数列,并求出{an}的通项公式.
(2)设,数列{cncn+2}的前n项和为Tn,是否存在正整数m,使得对于n∈N*,恒成立?若存在,求出m的最小值;若不存在,请说明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数若满足: ,且,则称函数为“指向的完美对称函数”.已知是“1指向2的完美对称函数”,且当时, .若函数在区间上恰有5个零点,则实数的取值范围为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知都是各项不为零的数列,且满足,,其中是数列的前项和,是公差为的等差数列.
(1)若数列的通项公式分别为,求数列的通项公式;
(2)若(是不为零的常数),求证:数列是等差数列;
(3)若(为常数,),(,),对任意,,求出数列的最大项(用含式子表达).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】朱世杰是历史上最未打的数学家之一,他所著的《四元玉鉴》卷中“如像招数一五间”,有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升,共支米四百三石九斗二升,问筑堤几日?”.其大意为:“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天发大米3升,共发出大米40392升,问修筑堤坝多少天”.在这个问题中,前5天应发大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生将语文、数学、英语、物理、化学、生物6科的作业安排在周六、周日完成,要求每天至少完成两科,且数学,物理作业不在同一天完成,则完成作业的不同顺序种数为( )
A. 600B. 812C. 1200D. 1632
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com