精英家教网 > 高中数学 > 题目详情

所表示的平面区域为Dn,把Dn内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列:

.

(Ⅰ)求

(Ⅱ)数列{an}满足a1=x1,且时,        

(Ⅲ)在(Ⅱ)的条件下,试比较(与4的大小关系.

解: 

故Dn内的整点都落在直线x=1上,且,故Dn内的整点按其到原点的距离从近到远排成的点列为(1,1),(1,2),…,(1,n),∴

(Ⅱ)证明:当时,

,得

  …………①

  …………② 

②式减①式,得 

(Ⅲ)证明:当n=1时,

当n=2时,(1+

由(Ⅱ)知,当时, 

∴当

  …………12分

∴上式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对n∈N*,不等式
x>0
y>0
y≤-nx+2n
所表示的平面区域为Dn,把Dn内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列:(x1,y1),(x2,y2),(x3,y3),…,(xn,yn).
(1)求xn,yn
(2)数列{an}满足a1=x1且n≥2时,an=yn(
1
2y1
+
1
2y2
+
1
2y3
+…+
1
2yn
)
,求数列{an}的前n项和Sn
(3)设c1=1,当n≥2时,cn=lg[2
y
2
_
•(1-
1
y
2
2
)•(1-
1
y
2
3
)•(1-
1
y
2
4
)•…•(1-
1
y
2
n
)]
,且数列{cn}的前n项和Tn,求T99

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系上,设不等式组
x>0
y>0
y≤-m(x-3)
(n∈N*
所表示的平面区域为Dn,记Dn内的整点(即横坐标和纵坐标均
为整数的点)的个数为an(n∈N*).
(Ⅰ)求a1,a2,a3并猜想an的表达式再用数学归纳法加以证明;
(Ⅱ)设数列{an}的前项和为Sn,数列{
1
Sn
}的前项和Tn
是否存在自然数m?使得对一切n∈N*,Tn>m恒成立.若存在,
求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对n∈N*,不等式组
x>0
y>0
y≤-nx+2n
所表示的平面区域为Dn,Dn内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列.(x1,y1)(x2,y2),(x3,y3),…,(xn,yn
(1)求xn,yn
(2)数列{an}满足a1=x1,且n≥2时an=
y
2
n
(
1
y
2
1
+
1
y
2
2
+…+
1
y
2
n-1
)
.证明当n≥2时,
an+1
(n+1)
-
an
n2
=
1
n2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•黄冈模拟)对n∈N*,不等式
x>0
y>0
y≤-nx+2n
所表示的平面区域为Dn,把Dn内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成一列点:(x1,y1),(x2,y2),(x3,y4),…,(xn,yn
(1)求xn,yn
(2)若an=3n+λ•(-xn)n-12yn(λ为非零常数),问是否存在整数λ,使得对任意n∈N*,都有an+1>an

查看答案和解析>>

同步练习册答案