精英家教网 > 高中数学 > 题目详情

【题目】设圆的圆心在轴上,并且过两点.

(1)求圆的方程;

(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.

【答案】(1) (2) .

【解析】试题分析:(1的圆心在的垂直平分线上,又的中点为 ,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得: .∴.∴的中点为.代入即可求得,解得.再检验即可

试题解析:

(1)∵圆的圆心在的垂直平分线上,

的中点为 ,∴的中垂线为.

∵圆的圆心在轴上,∴圆的圆心为

因此,圆的半径

∴圆的方程为.

(2)设是直线与圆的交点,

代入圆的方程得: .

.

的中点为.

假如以为直径的圆能过原点,则.

∵圆心到直线的距离为

.

,解得.

经检验时,直线与圆均相交,

的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】把正整数排成如图(a)的三角形阵,然后擦去第偶数行中的所有奇数,第奇数行中的所有偶数,可得如图(b)三角形阵,现将图(b)中的正整数按从小到大的顺序构成一个数列{an},若ak=2017,则k=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活中进行信息交流的重要工具.据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中都是青年人.

(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成2×2列联表:

(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?

(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人,均是青年人的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司购买了ABC三种不同品牌的电动智能送风口罩.为了解三种品牌口罩的电池性能,现采用分层抽样的方法,从三种品牌的口罩中抽出25台,测试它们一次完全充电后的连续待机时长,统计结果如下(单位:小时):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8

(Ⅰ)已知该公司购买的C品牌电动智能送风口罩比B品牌多200台,求该公司购买的B品牌电动智能送风口罩的数量;

(Ⅱ)从A品牌和B品牌抽出的电动智能送风口罩中,各随机选取一台,求A品牌待机时长高于B品牌的概率;

(Ⅲ)再从ABC三种不同品牌的电动智能送风口罩中各随机抽取一台,它们的待机时长分别是a,bc(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为,表格中数据的平均数记为.若,写出a+b+c的最小值(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,若bcosC+ccosB=asinA,则△ABC的形状为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列满足

(1)设,求数列的通项公式;

(2)设,求数列的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,点,直线与动直线的交点为,线段的中垂线与动直线的交点为.

(1)求动点的轨迹的方程;

(2)过动点作曲线的两条切线,切点分别为,求证:的大小为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么在一个生产周期内该企业生产甲、乙两种产品各多少吨可获得最大利润,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,前n项和为Sn , a2+a3=5,且Sn= an+ ,则S10=

查看答案和解析>>

同步练习册答案