【答案】
分析:(1)根据条件可设二次函数的顶点式f(x)=a
--
,由f(1)=0,可得a,从而有f(x)=x
2-(t+2)x+(t+1).
(2)由f(x)=x
2-(t+2)x+(t+1)=(x-1)(x-t-1),所以“f(x)•g(x)+a
nx+b
n=x
n+1”转化为:(x-1)(x-t-1)g(x)+a
nx+b
n=x
n+1.要消去g(x)将x=1,x=t+1别代入上式,得
,解方程组即可.
(3)由a
n+b
n=1,可知圆C
n的圆心O
n在直线x+y=1上,可求得圆心距|O
nO
n+1|=
|a
n+1-a
n|=
(t+1)
n+1再由圆C
n与C
n+1外切,可得r
n+r
n+1=
(t+1)
n+1设{r
n}的公比为q,有
得q=
=t+1从而求得通项及前n项和
解答:解:(1)设f(x)=a
--
,
∵f(1)=0,
∴a
--
=0,从而a=1,
∴f(x)=x
2-(t+2)x+(t+1).
(2)f(x)=x
2-(t+2)x+(t+1)=(x-1)(x-t-1)
∴(x-1)(x-t-1)g(x)+a
nx+b
n=x
n+1.
将x=1,x=t+(1分)别代入上式,得
∵t≠0,
∴a
n=
[(t+1)
n+1-1]
b
n=
[1-(t+1)
n]
(3)∵a
n+b
n=1,
∴圆C
n的圆心O
n在直线x+y=1上
∴|O
nO
n+1|=
|a
n+1-a
n|=
(t+1)
n+1又圆C
n与C
n+1外切,故r
n+r
n+1=
(t+1)
n+1设{r
n}的公比为q,则
(2)÷(1),得q=
=t+1
于是r
n=
∴S
n=π(r
12+r
22+…+r
n2)=
=
[(t+1)
2n-1]
点评:本题主要考查数列与函数,方程的综合运用,主要涉及了函数的解析式,圆与圆的位置关系,数列的递推与通项和前n项和公式.