【题目】设命题p:不等式x﹣x2≤a对x≥1恒成立,命题q:关于x的方程x2﹣ax+1=0在R上有解.
(1)若p为假命题,求实数a的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.
【答案】
(1)解:∵¬p为假命题,
∴命题p为真命题;
∵x﹣x2在x∈[1,+∞)单调递减,
∴x﹣x2的最大值为0,
故a≥0
(2)解:命题q:△=a2﹣4≥0,
∴a≥2或a≤﹣2,
“p∧q”为假命题,“p∨q”为真命题,等价于p真q假,或者p假q真,
则 或 ,
∴实数a的取值范围为a≤﹣2或0≤a<2
【解析】(1)若p为假命题,则p为真命题,进而可得实数a的取值范围;(2)若“p∧q”为假命题,“p∨q”为真命题,则p真q假,或者p假q真,进而可得实数a的取值范围;
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】如图1所示,在边长为24的正方形中,点在边上,且, ,作分别交、于点,作分别交于点,将该正方形沿折叠,使得与重合,构成如图2所示的三棱柱.
(1)求证: 平面;
(2)求多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+ px﹣p+1=0(p∈R)两个实根. (Ⅰ)求C的大小
(Ⅱ)若AB=3,AC= ,求p的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
(1)求函数f(x)的最小正周期和最大值,并求出x为何值时,f(x)取得最大值;
(2)求函数f(x)在[﹣2π,2π]上的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 =1(a>0,b>0)的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为﹣ ,求双曲线的离心率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某大风车的半径为2m,每6s旋转一周,它的最低点O离地面0.5 m.风车圆周上一点A从最低点O开始,运动t(s)后与地面的距离为h(m),则函数h=f(t)的关系式( )
A.y=﹣2cos+2.5
B.y=﹣2sin+2.5
C.y=﹣2cos+2.5
D.y=﹣2sin+2.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.
(1)将y表示为x的函数;
(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a , PA=PC= a ,
(1)求证:PD⊥平面ABCD;
(2)求证:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com