精英家教网 > 高中数学 > 题目详情
已知集合A{x|y=lg(2-x)},集合B={x|-2≤x≤2},则A∩B=(  )
A、{x|x≥-2}
B、{x|-2<x<2}
C、{x|-2≤x<2}
D、{x|x<2}
考点:交集及其运算
专题:集合
分析:利用交集定义和对数函数性质求解.
解答: 解:∵集合A{x|y=lg(2-x)}={x|2-x>0}={x|x<2},
集合B={x|-2≤x≤2},
∴A∩B={x|-2≤x<2}.
故选:C.
点评:本题考查交集的求法,是基础题,解题时要注意对数函数的性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在空间直角坐标系中一点P(1,3,4)到x轴的距离是(  )
A、5
B、
10
C、
17
D、
26

查看答案和解析>>

科目:高中数学 来源: 题型:

计算2sin405°-4cos390°+sin1125°-2cos1485°+2sin780°的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,已知前15项的和S15=90,则a8=(  )
A、
45
2
B、12
C、
45
4
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x|0≤x<8 },B={x|1<x<9},求
(Ⅰ)(∁UA)∪B;
(Ⅱ)A∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={0,2,a},B={1,a2},若A∪B={0,1,2,3,9},则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在坐标原点的双曲线C的右焦点为(2,0),左顶点为(-
3
,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+
2
与双曲线C恒有两个不同的公共点A,B,且
OA
OB
>2(其中O为坐标原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为三次函数,当x=1时f(x)有极大值4,当x=3时,f(x)有极小值0,且函数f(x)过原点,则此函数是(  )
A、f(x)=x3-2x2+3x
B、f(x)=x3-6x2+x
C、f(x)=x3+6x2+9x
D、f(x)=x3-6x2+9x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1 B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O为AC中点.
(1)设E为BC1中点,连接OE,证明:OE∥平面A1AB;
(2)求二面角A-A1B-C1的余弦值.

查看答案和解析>>

同步练习册答案