精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥P﹣ABC中,PA垂直于底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为

【答案】
【解析】解:在Rt△PAB中,PA=AB=2,∴PB=2 , ∵AE⊥PB,∴AE= PB= ,∴PE=BE=
∵PA⊥底面ABC,得PA⊥BC,AC⊥BC,PA∩AC=A
∴BC⊥平面PAC,可得AF⊥BC
∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC
∵PB平面PBC,∴AF⊥PB
∵AE⊥PB且AE∩AF=A,∴PB⊥面AEF,
结合EF平面AEF,可得PB⊥EF.
Rt△PEF中,∠EPF=θ,可得EF=PEtanθ= tanθ,
∵AF⊥平面PBC,EF平面PBC.∴AF⊥EF.
∴Rt△AEF中,AF= =
∴SAEF= AFEF= × tanθ× =
∴当tan2θ= ,即tanθ= 时,SAEF有最大值为
所以答案是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线处的切线与平行.

(1)求的值;

(2)当时,试探究函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组中的两个函数是同一函数的为( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)=
A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,其中为真命题的是( ) ① ;②
;④
A.①和②
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且a≠1,函数f(x)= (ax﹣ax),g(x)=﹣ax+2.
(1)指出f(x)的单调性(不要求证明);
(2)若有g(2)+f(2)=3,求g(﹣2)+f(﹣2)的值;
(3)若h(x)=f(x)+g(x)﹣2,求使不等式h(x2+tx)+h(4﹣x)<0恒成立的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py(p>0)与直线2x﹣y+1=0交于A,B两点, ,点M在抛物线上,MA⊥MB.
(1)求p的值;
(2)求点M的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数函数f(x)=(
(1)求函数f(x)的值域
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P是椭圆 上的一点,F1和F2是焦点,且 ,则△F1PF2的周长为 , △F1PF2的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: ,不经过原点O的直线l:y=kx+m(k>0)与椭圆E相交于不同的两点A、B,直线OA,AB,OB的斜率依次构成等比数列.
(Ⅰ)求a,b,k的关系式;
(Ⅱ)若离心率 ,当m为何值时,椭圆的焦距取得最小值?

查看答案和解析>>

同步练习册答案