精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=|2x-1|-|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若?x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.

分析 (1)利用零点分区间讨论去掉绝对值符号,化为分段函数,在每一个前提下去解不等式,每一步的解都要和前提条件找交集得出每一步的解,最后把每一步最后结果找并集得出不等式的解;
(2)根据第一步所化出的分段函数求出函数f(x)的最小值,若?x0∈R,使得f(x0)+2m2<4m成立,只需4m-2m2>fmin(x),解出实数m的取值范围.

解答 解:(Ⅰ)①当x<-2时,f(x)=1-2x+x+2=-x+3,令-x+3>0,解得x<3,又∵x<-2,∴x<-2;
②当-2≤x≤$\frac{1}{2}$时,f(x)=1-2x-x-2=-3x-1,令-3x-1>0,解得x<-$\frac{1}{3}$,又∵-2≤x≤$\frac{1}{2}$,∴-2≤x<-$\frac{1}{3}$;
③当x$>\frac{1}{2}$时,f(x)=2x-1-x-2=x-3,令x-3>0,解得x>3,又∵x$>\frac{1}{2}$,∴x>3.
综上,不等式f(x)>0的解集为(-∞,-$\frac{1}{3}$)∪(3,+∞).
(Ⅱ)由(I)得f(x)=$\left\{\begin{array}{l}{-x+3,x<-2}\\{-3x-1,-2≤x≤\frac{1}{2}}\\{x-3,x>\frac{1}{2}}\end{array}\right.$,
∴fmin(x)=f($\frac{1}{2}$)=-$\frac{5}{2}$.
∵?x0∈R,使得f(x0)+2m2<4m,∴4m-2m2>-$\frac{5}{2}$,
整理得:4m2-8m-5<0,解得:-$\frac{1}{2}$<m<$\frac{5}{2}$,
∴m的取值范围是(-$\frac{1}{2}$,$\frac{5}{2}$).

点评 本题考查了绝对值不等式的解法及分段函数的应用,分情况讨论去绝对值符号是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2-\frac{2}{\sqrt{5}}t}\\{y=\frac{1}{\sqrt{5}}t}\end{array}\right.$(t为参数)
(Ⅰ)若曲线C1与C2的交点为A,B,求|AB|;
(Ⅱ)已知点M(ρ,θ)在曲线C1上,求ρ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在四边形ABCD中,M为BD上靠近D的三等分点,且满足$\overrightarrow{AM}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则实数x,y的值分别为(  )
A.$\frac{1}{3}$,$\frac{2}{3}$B.$\frac{2}{3}$,$\frac{1}{3}$C.$\frac{1}{2}$,$\frac{1}{2}$D.$\frac{1}{4}$,$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若直线x+2y-2=0与椭圆mx2+ny2=1交于点C,D,点M为CD的中点,直线OM(O为原点)的斜率为$\frac{1}{2}$,且OC⊥OD,则m+n=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=\frac{1}{2-x}$的图象与函数y=2sin(πx-π)(-2≤x≤6)的图象所有交点的横坐标之和等于(  )
A.4B.8C.10D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某个实心零部件的形状是如图所示的几何体,其下部为底面是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD.上部为直四棱柱ABCD-A2B2C2D2
(1)证明:直线BD⊥平面ACC2A2
(2)现需要对该零件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米)每平方厘米的加工处理费为0.20元,需加工处理费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设满足以下两个条件的有穷数列a1,a2,…,an为n(n=2,3,4,…,)阶“期待数列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(1)分别写出一个单调递增的3阶和4阶“期待数列”;
(2)若某2013阶“期待数列”是等差数列,求该数列的通项公式;
(3)记n阶“期待数列”的前k项和为Sk(k=1,2,3,…,n),试证:|Sk|≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=log2[$\sqrt{2}$sin(2x-$\frac{π}{3}$)]+$\sqrt{2-{x}^{2}}$的定义域为$[-\sqrt{2},-\frac{π}{3})∪(\frac{π}{6},\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,正方形ABCD边长为2,E、F分别为AD、CD的中点,沿EF将正方形ABCD剪成两片,将这样的图片对接在正六边形各边上,如图所示,再将所得图片沿虚线折起,围成一个几何体,则此几何体的体积(  )
A.3B.4C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案