精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,a、b、c分别为角ABC所对的边,且 acosC=csinA.
(1)求角C的大小.
(2)若c=2 ,且△ABC的面积为6 ,求a+b的值.

【答案】
(1)解:由csinA= acosC,结合正弦定理得,

∴sinC= cosC,即tanC=

∵0<C<π,

∴C=


(2)解:∵C= ,c=2

∴由余弦定理可得:28=a2+b2﹣ab=(a+b)2﹣3ab,

∵△ABC的面积为6 = absinC= ab,

解得:ab=24,

∴28=(a+b)2﹣3ab=(a+b)2﹣72,解得a+b=10


【解析】(1)已知等式变形后利用正弦定理化简,整理后再利用同角三角函数间的基本关系求出tanC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;(2)由余弦定理可得:28=(a+b)2﹣3ab,由三角形面积公式可解得:ab=24,进而解得a+b的值.
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函数f(x)的单调区间;
(2)当x≥0时,不等式f(x)≤ex恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an=3an1+3n﹣1(n∈N* , n≥2), 已知a3=95.
(1)求a1 , a2
(2)是否存在一个实数t,使得 ,且{bn}为等差数列?若存在,则求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)的定义在(0,3)上的函数,f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是(
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C: ,(θ为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程2ρcosθ+ρsinθ﹣6=0.
(1)写出曲线C的普通方程,直线l的直角坐标方程;
(2)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中.圆C的参数方程为 (α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,点D的极坐标为(ρ1 , π).
(1)求圆C的极坐标方程;
(2)过点D作圆C的切线,切点分别为A,B,且∠ADB=60°,求ρ1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C所对的边分别是a、b、c,已知3asinC=ccosA.
(Ⅰ)求sinA的值;
(Ⅱ)若B= ,△ABC的面积为9,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+3x对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,则x∈

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xex(e为自然对数的底数),g(x)=(x+1)2
(Ⅰ)记 ,讨论函数F(x)的单调性;
(Ⅱ)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案