精英家教网 > 高中数学 > 题目详情

【题目】如果对一切正实数,不等式恒成立,则实数的取值范围是(

A.B.C.D.

【答案】D

【解析】

将不等式cos2xasinx恒成立转化为asinx+1sin2x恒成立,构造函数fy,利用基本不等式可求得fymin3,于是问题转化为asinxsin2x2恒成立.通过对sinx0sinx0sinx0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.

解:实数xy,不等式cos2xasinx恒成立asinx+1sin2x恒成立,

fy

asinx+1sin2xfymin

y0fy23(当且仅当y6时取“=”),fymin3

所以,asinx+1sin2x3,即asinxsin2x2恒成立.

sinx0asinx恒成立,令sinxt,则0t1,再令gt)=t0t1),则agtmin

由于g′(t)=10

所以,gt)=t在区间(01]上单调递减,

因此,gtming1)=3

所以a3

sinx0,则asinx恒成立,同理可得a≥﹣3

sinx002恒成立,故aR

综合①②③,﹣3a3

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V、棱数E及面数F满足等式VE+F2,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮、简洁的公式之一,现实生活中存在很多奇妙的几何体,现代足球的外观即取自一种不完全正多面体,它是由12块黑色正五边形面料和20块白色正六边形面料构成的.20世纪80年代,化学家们成功地以碳原子为顶点组成了该种结构,排列出全世界最小的一颗足球,称为巴克球(Buckyball.则巴克球的顶点个数为(

A.180B.120C.60D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,且交于两点,已知点的极坐标为.

1)求曲线的普通方程和直线的直角坐标方程,并求的值;

2)若矩形内接于曲线且四边与坐标轴平行,求其周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中

1)当,求曲线在点处的切线方程;

2)当,求函数的单调区间;

3)若对于恒成立,的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面是边长为6的正三角形,底面,且与底面所成的角为

1)求三棱锥的体积;

2)若的中点,求异面直线所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,若底面是正三角形,侧棱长分别为棱的中点,并且,则异面直线所成角为______;三棱锥的外接球的体积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 分别是线段的中点.

(1)求异面直线所成角的大小;

(2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,正方形所在平面垂直于平面,四边形为平行四边形,G上一点,且平面.

(1)求证:平面平面

(2)当三棱锥体积最大时,求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,且,分别是定义在上的偶函数和奇函数.

(1)求函数的反函数;

(2)已知,若函数上满足,求实数a的取值范围;

(3)若对于任意不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案