精英家教网 > 高中数学 > 题目详情
10.如果P1,P2,P3是抛物线C:y2=8x上的点,它们的横坐标依次为x1,x2,x3.F是抛物线C的焦点,若x1+x2+x3=10,则|P1F|+|P2F|+|P3F|=16.

分析 由抛物线性质得|PnF|=xn+$\frac{p}{2}$=xn+2,由此能求出结果.

解答 解:∵P1,P2,P3是抛物线C:y2=8x上的点,它们的横坐标依次为x1,x2,x3,F是抛物线C的焦点,
x1+x2+x3=10,
∴|P1F|+|P2F|+|P3F|
=(x1+2)+(x2+2)+(x3+2)
=x1+x2+x3+6
=16.
故答案为:16.

点评 本题给出抛物线上n个点的横坐标之和,求它们到焦点的距离之和.着重考查了抛物线的定义、标准方程和简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.圆C1:x2+y2=9与圆C2:(x+3)2+(y+4)2=16的位置关系是(  )
A.内切B.相交C.外切D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x=1是函数f(x)=xa+b的一个零点.
(1)若函数f(x)在点(1,f(1))处的切线的斜率为2,求f(x)的解析式;
(2)设g(x)=f(x)+ln(1+e-2x),且g(x)是偶函数,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列选项中,与其他三个选项所蕴含的数学推理不同的是(  )
A.独脚难行,孤掌难鸣B.前人栽树,后人乘凉
C.物以类聚,人以群分D.飘风不终朝,骤雨不终日

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知命题p:a≥2;命题q:对任意实数x∈[-1,1],关于x的不等式x2-a≤0恒成立,若p且q是真命题,则实数a的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{{3}^{x}+\sqrt{3}}$
(1)分别计算f(0)+f(1);f(-1)+f(2);f(-2015)+f(2016)的值;
(2)试根据(1)的结果归纳猜想出一般性结论,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=-2x2+ax-lnx(a∈R),g(x)=$\frac{ex}{{e}^{x}}$+3.
(I)若函数f(x)在定义域内单调递减,求实数a的取值范围;
(II)若对任意x∈(0,e),都有唯一的xo∈[e-4,e],使得g(x)=f(xo)+2xo2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx与g(x)=a-x($\frac{1}{e}$≤x≤e)的图象上恰好存在唯一一个关于x轴对称的点,则实数a的取值范围为(  )
A.[1,e-1]B.{1}∪($\frac{1}{e}$+1,e-1]C.[1,$\frac{1}{e}$+1]D.($\frac{1}{e}$+1,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某几何体的三视图如图所示,则该几何体的表面积是$16+6\sqrt{2}$.

查看答案和解析>>

同步练习册答案