精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,过点P(﹣5,a)作圆x2+y2﹣2ax+2y﹣1=0的两条切线,切点分别为M(x1 , y1),N(x2 , y2),且 + =0,则实数a的值为

【答案】3或﹣2
【解析】解:设MN中点为Q(x0 , y0),T(1,0),圆心R(a,﹣1),根据对称性,MN⊥PR,
= = =
∵kMN= + =0
∴kMNkTQ=﹣1,
∴MN⊥TQ,
∴P,Q,R,T共线,
∴kPT=kRT

∴a2﹣a﹣6=0,
∴a=3或﹣2.
故答案为:3或﹣2.
两者的和实质上是一个斜率与另一个斜率的倒数和,进而可得两斜率乘积为﹣1,可得P,Q,R,T共线,即可求出实数a的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知| |=1,| |=
(1)若 的夹角为60°,求| + |;
(2)若 垂直,求 的夹角.
(3)若 ,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在下列结论中: ①函数y=sin(kπ﹣x)(k∈Z)为奇函数;
②函数 的图象关于点 对称;
③函数 的图象的一条对称轴为 π;
④若tan(π﹣x)=2,则cos2x=
其中正确结论的序号为(把所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如图,已知分数在100~110的学生数有21人. (Ⅰ)求总人数N和分数在110~115分的人数n;
(Ⅱ)现准备从分数在110~115分的n名学生(女生占 )中任选2人,求其中恰好含有一名女生的概率;
(Ⅲ)为了分析某个学生的学习状态,对其下一阶段的学习提供指导性建议,对他前7次考试的数学成绩x(满分150分),物理成绩y进行分析,下面是该生7次考试的成绩.

数学

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知该生的物理成绩y与数学成绩x是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据(u1 , v1),(u2 , v2),,(un , vn),其回归线v=α+βu的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若曲线C1:x2+y2﹣2x=0与曲线C2:mx2﹣xy+mx=0有三个不同的公共点,则实数m的取值范围是(
A.(﹣
B.(﹣∞,﹣ )∪( ,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(﹣ ,0)∪(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C1:x2+y2=m与圆C2:x2+y2﹣6x﹣8y+16=0外切. (Ⅰ)求实数m的值;
(Ⅱ)若圆C1与x轴的正半轴交于点A,与y轴的正半轴交于点B,P为第三象限内一点,且点P在圆C1上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得 + = ,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sin(2x+ ),sinx), =(1,sinx),f(x)=
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=2 ,若 sin(A+C)=2cosC,求b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B两点分别在两条互相垂直的直线y=2x和x+ay=0上,且线段AB的中点为P(0, ),则直线AB的方程为( )
A.y=- x+5
B.y= x-5
C.y= x+5
D.y=- x-5

查看答案和解析>>

同步练习册答案