精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= sinωx﹣ cosωx(ω>0),将函数y=|f(x)|的图象向左平移 个单位长度后关于y轴对称,则当ω取最小值时,g(x)=cos(ωx+ )的单调递减区间为(
A.[﹣ + + ](k∈Z)
B.[﹣ + + ](k∈Z)
C.[﹣ + + ](k∈Z)
D.[﹣ + + ](k∈Z)

【答案】D
【解析】解:函数f(x)= sinωx﹣ cosωx=sin(ωx ),(ω>0),将函数y=|f(x)|的图象向左平移 个单位长度后得到函数解析式为|sin[ω(x ],又图象关于y轴对称, 所以 ,k∈Z,
则当ω取最小值时为
所以g(x)=cos( x+ )的单调递减区间由2kπ≤ x ≤2kπ+π,解得 ,k∈Z;
所以当ω取最小值时,g(x)=cos(ωx+ )的单调递减区间为[ ];
故选D.
首先化简三角函数式,然后根据平移以及对称得到ω最小值,然后由题意求单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点 是椭圆上异于长轴端点的两点.

(1)求椭圆的方程;

(2)已知直线 ,且,垂足为 ,垂足为,若,且的面积是面积的5倍,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足 ,若目标函数z=﹣mx+y的最大值为﹣2m+10,最小值为﹣2m﹣2,则实数m的取值范围是(
A.[﹣1,2]
B.[﹣2,1]
C.[2,3]
D.[﹣1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且在上单调递减,则的解集为  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥底面为矩形 的中点 的中点 中点.

1)证明: 平面

2)若平面底面 试在上找一点使平面并证明此结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=1,an+1= 若S3n≤λ3n1恒成立,则实数λ的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+x+
(Ⅰ)若a=﹣2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若关于x的不等式f(x)≥a+1在(0,+∞)上恒成立,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,. 现从这10人中随机选出2人作为该组代表参加座谈会.
(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(2)设 为选出的2人参加义工活动次数之差的绝对值,求随机变量 的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
(1)讨论函数 的单调性,并证明当 >0时,
(2)证明:当 时,函数 有最小值.设g(x)的最小值为 ,求函数 的值域.

查看答案和解析>>

同步练习册答案