精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知如图(1),正三角形ABC的边长为2a,CDAB边上的高,EF分别是ACBC边上的点,且满足,现将△ABC沿CD翻折成直二面角A-DC-B,如图(2).

(Ⅰ) 求二面角B-AC-D的大小;
(Ⅱ) 若异面直线ABDE所成角的余弦值为,求k的值.
(1) . (2) k=

试题分析:解:(Ⅰ) 过D点作DGACG,连结BG

ADCD, BDCD,
∴ ∠ADB是二面角A-CD-B的平面角.
∴ ∠ADB=, 即BDAD.
BD⊥平面ADC. ∴ BDAC.
AC⊥平面BGD. ∴ BGAC .
∴ ∠BGD是二面角B-AC-D的平面角.
ADC中,AD=aDC=, AC=2a,
.
RtBDG中,.
.
即二面角B-AC-D的大小为.   
(Ⅱ) ∵ ABEF, ∴ ∠DEF(或其补角)是异面直线ABDE所成的角.
,∴ .
DC=,


 
.
. 解得 k=.
点评:解决该试题的关键是能利用定义求作角,结合三角形来求解得到结论,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知平面和直线,给出下列条件:①;②;③;④;⑤.则使成立的充分条件是      .(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线mn和平面.下列四个命题中,
①若mn,则mn
②若mnmn,则
③若m,则m
④若mm,则m
其中正确命题的个数是(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面,则下列命题中真命题的是(  )
A.若,则B.若 ,则
C.若D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
如图已知四棱锥的底面是边长为6的正方形,侧棱的长为8,且垂直于底面,点分别是的中点.求

(1)异面直线所成角的大小(结果用反三角函数值表示);
(2)四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图:在底面为直角梯形的四棱锥P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.

(1)求证:BD⊥平面PAC
(2)求二面角B-PC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知直三棱柱中,△为等腰直角三角形,∠ =,且分别为的中点.

(1)求证:∥平面
(2)求证:⊥平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若,且,则
B.若,且,则
C.若,且,则
D.若,且,则

查看答案和解析>>

同步练习册答案