精英家教网 > 高中数学 > 题目详情
1.已知集合M={x|x2-1≤0},N={x|-2<x<1,x∈Z},则M∩N(  )
A.{-1,0}B.{1}C.{-1,0,1}D.

分析 求出M中不等式的解集确定出M,列举出N中的元素确定出N,找出M与N的交集即可.

解答 解:由M中不等式变形得:(x+1)(x-1)≤0,
解得:-1≤x≤1,即M=[-1,1],
由题意得:N={-1,0},
则M∩N={-1,0},
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知正数a,b满足2a•4b≤8,则ab的最大值为$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$,x∈R.
(1)求f(x)取最大值时相应的x的集合;
(2)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线y=ax2(a≠0)的准线方程为y=-1,焦点坐标为F(0,1).
(1)求抛物线的方程;
(2)设F是抛物线的焦点,直线l;y=kx+b(k≠0)与抛物线相交于A,B两点,记AF,BF的斜率之和为m,求常数m,使得对于任意的实数k(k≠0),直线l恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知正项等比数列{an}满足:a9=a8+2a7,若存在两项am,an使得$\sqrt{{a}_{m}•{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为$\frac{11}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A(-$\sqrt{3}$,2),B($\sqrt{3}$,0),且AB为圆C的直径.
(1)求圆C的方程;
(2)设点P为圆C上的任意一点,过点P作倾斜角为120°的直线l,且l与直线x=$\sqrt{3}$相交于点M,求|PM|的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,AB=1米,如图所示,小球从A点出发以大小为5v的速度沿半圆O轨道滚到某点E处,经弹射器以6v的速度沿与点E切线垂直的方向弹射到落袋区BC内,落点记为F,设∠AOE=θ弧度,小球从A到F所需时间为T.
(1)试将T表示为θ的函数T(θ),并写出定义域;
(2)求时间T最短时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为发展低碳经济,保护环境,某企业在政府部门的支持下,新上了一个“工业废渣处理再利用”的环保项目,经测算,该项目每月的处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:
y=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-100{x}^{2}+7740x,x∈[120,160)}\\{\frac{1}{2}{x}^{2}-200x+80000,x∈[160,600)}\end{array}\right.$且每处理一吨“工业废渣”,可得到能再利用的产品价值200元,若该项目不获利,政府将给予补贴.
(1)当x∈[160,300)时,判断该项日能否获利,如果获利,求出最大利涧;加果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)求该项目每月出力量为多少吨时,每吨的平均处理成本最低.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆方程$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2是椭圆上的左、右两焦点且在x轴上.
(1)过椭圆的右焦点F1作x轴的垂线交椭圆于P点,点A、B分别是椭圆与x轴负半轴、y轴正半轴的交点,且PF2∥AB,求椭圆的离心率;
(2)过椭圆的右焦点F2作x轴的垂线交椭圆于A、B两点,若$\overline{OA}$•$\overline{OB}$=0求椭圆的离心率.

查看答案和解析>>

同步练习册答案