精英家教网 > 高中数学 > 题目详情
已知 i是虚数单位,复数z=(
3
-i)(1+
3
i)
,则复数z的实部为
 
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:由条件利用两个复数代数形式的乘法法则化简复数z,可得复数z的实部.
解答: 解:由于复数z=(
3
-i)(1+
3
i)
=2
3
+2i,故复数z的实部为2
3

故答案为:2
3
点评:本题主要考查复数的基本概念,两个复数代数形式的乘法法则的应用,虚数单位i的幂运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b均为正实数,若ab(a+b)=1,则a2+ab+4b的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C所对的边分别为a,b,c,且满足bsinBsinC+ccos2B=
7
3
b,
(1)求
c-b
c+b
的值;
(2)若tanA=
5
3
11
,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角α终边经过点P(12,-5),则sinα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足(z+1)(4-3i)=3+4i,则z的虚部为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,AB=AD=2CD,E为PB的中点.
(Ⅰ)证明:CE⊥AB;
(Ⅱ)若二面角P-CD-A为45°,求直线CE与平面PAB所成角的正切值.
(Ⅲ)若PA=kAB,求平面PCD与平面PAB所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数y=f(x)的图象是连续不断的,若对任意的实数,存在常数使得f(t+x)=-tf(x)恒成立,则称f(x)是一个“关于t函数”,下列“关于t函数”的结论正确的是(  )
A、f(x)=2不是“关于t函数”
B、f(x)=x是一个“关于t函数”
C、“关于
1
2
函数”至少有一个零点
D、f(x)=sinπx不是一个“关于t函数”

查看答案和解析>>

科目:高中数学 来源: 题型:

平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行.求:
(1)这些直线所成的点的个数(除原10点外);
(2)这些直线交成多少个三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若a=3,b=4,∠C=60°,则c的值等于(  )
A、5
B、13
C、
13
D、
37

查看答案和解析>>

同步练习册答案