精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若不等式的解集为,求实数的值;

(2)若不等式对一切实数恒成立,求实数的取值范围;

【答案】(1)(2)

【解析】分析:(1)根据二次不等式的解集与二次方程的根的关系可得参数

(2)这个不等式恒成立,首先讨论时,能不能恒成立,其次在时,这是二次不等式,结合二次函数的性质可求解.

详解:(1)的解集为,则的解为2,且

,解得

(2)由,得

a=0,不等式不对一切实数x恒成立,舍去,

a≠0,由题意得,解得:

a的范围是:

判别式

Δb24ac

Δ>0

Δ=0

Δ<0

二次函数yax2bxc

(a>0)的图象

一元二次方程

ax2bxc=0 (a>0)的根

有两相异实根

x1x2(x1<x2)

有两相等实根

x1x2=-

没有实数根

ax2bxc>0(a>0)的解集

{x|x<x1x>x2}

{x|xx1}

R

ax2bxc<0(a>0)的解集

{x|x1<x<x2}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且它的一个焦点 的坐标为 .
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设过焦点 的直线与椭圆相交于 两点, 是椭圆上不同于 的动点,试求 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面程序框图中,若输入互不相等的三个正实数a,b,c(abc≠0),要求判断△ABC的形状,则空白的判断框应填入(
A.a2+b2>c2
B.a2+c2>b2
C.b2+c2>a2
D.b2+a2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥PABCDPC⊥底面ABCDADBCAD=2BC=2,PC=2,ABC是以AC为斜边的等腰直角三角形EPD的中点.

(1)求证:平面EAC⊥平面PCD

(2)求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象过点(1,13),且函数 是偶函数.

(1)求的解析式;

(2)已知,,求函数在[,2]上的最大值和最小值;

(3)函数的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了及时向群众宣传“十九大”党和国家“乡村振兴”战略,需要寻找一个宣讲站,让群众能在最短的时间内到宣讲站.设有三个乡镇,分别位于一个矩形的两个顶点的中点处,,现要在该矩形的区域内(含边界),且与等距离的一点处设一个宣讲站,记点到三个乡镇的距离之和为

(Ⅰ)设,将表示为的函数;

(Ⅱ)试利用(Ⅰ)的函数关系式确定宣讲站的位置,使宣讲站到三个乡镇的距离之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由经验得知,在某商场付款处排队等候付款的人数及概率如表:

排队人数

人以上

概率

(1)至多有人排队的概率是多少?

(2)至少有人排队的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,,,(), , .

(I)求;

(Ⅱ)猜想数列的通项公式,并证明;

(Ⅲ)设函数,若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求sinB的值;
(2)若D为AC的中点,且BD=1,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案