精英家教网 > 高中数学 > 题目详情

棱长为2的正方体中,E为的中点.

(1)求证:
(2)求异面直线AE与所成的角的正弦值.

(1)见解析(2)

解析试题分析:(1)可证,可证得。(2)因为所以异面直线AE与所成的角即为,在中可求得的正弦值。
试题解析:解:(1)在正方体中,连接,∴ 又∵。(6分)
(2)∵∴异面直线AE与所成的角为
中,AE=3,,∴异面直线AE与所成的角的正弦值为。(12分)
考点:线线垂直、线面垂直,异面直线所成的角。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.

求证:(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面,四边形为矩形,的中点,

(1)求证:
(2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在棱长为2的正方体中,的中点.
(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(Ⅰ)求证:
(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分别为PC,PB的中点.

(Ⅰ)求证:PB⊥DM;
(Ⅱ)求点B到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.

(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,五面体中,四边形ABCD是矩形,DA面ABEF,且DA=1,AB//EF,,P、Q、M分别为AE、BD、EF的中点.

(1)求证:PQ//平面BCE;
(2)求证:AM平面ADF;
(3)求二面角A-DF-E的余弦值.

查看答案和解析>>

同步练习册答案