精英家教网 > 高中数学 > 题目详情

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

【答案】(1)能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关;

(2)(i)经常使用共享单车的有3人,偶尔或不用共享单车的有2人.(ii)

【解析】试题分析:

(1)由列联表可得,所以能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关.

(2)i)依题意可知,经常使用共享单车的有(人),偶尔或不用共享单车的有(人).

ii由题意列出所有可能的结果,结合古典概型公式和对立事件公式可得选出的2人中至少有1人经常使用共享单车的概率.

试题解析:

1)由列联表可知,

.

因为

所以能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关.

2)(i)依题意可知,所抽取的530岁以上的网友中,经常使用共享单车的有(人),偶尔或不用共享单车的有(人).

ii)设这5人中,经常使用共享单车的3人分别为 ;偶尔或不用共享单车的2人分别为 .

则从5人中选出2人的所有可能结果为 10.

其中没有1人经常使用共享单车的可能结果为1种,

故选出的2人中至少有1人经常使用共享单车的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过抛物线E:x2=2py(p>0) 的焦点F作斜率分别为 k1,k2 的两条不同的直线 l1,l2 ,且k1+k2=2 ,l1与E 相交于点A,B, l2与E 相交于点C,D.以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在的直线记为 l .
(1)若k1>0,k2>0 ,证明;
(2)若点M到直线 l 的距离的最小值为 ,求抛物线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线x+y+m=0与圆x2+y2=4交于不同的两点A,B,O是坐标原点, ,则实数m的取值范围是(
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.
(1)已知函数f(x)= 的图象关于点(1,b)成中心对称,求实数b的值;
(2)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2kx1+1 , 求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且为偶函数,当时,,若函数恰有一个零点,则实数的取值集合是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足

(1)若λ= ,用向量 表示
(2)若| |=4,| |=3,且∠AOB=60°,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:y=ax+1﹣a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线方程:①y=﹣2|x﹣1|;②y=x2;③(x﹣1)2+(y﹣1)2=1;④x2+3y2=4;则其中直线l的“绝对曲线”有(
A.①④
B.②③
C.②④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生态公园的平面图呈长方形(如图),已知生态公园的长AB=8(km),宽AD=4(km),M,N分别为长方形ABCD边AD,DC的中点,P,Q为长方形ABCD边AB,BC(不含端点)上的一点.现公园管理处拟修建观光车道P﹣Q﹣N﹣M﹣P,要求观光车道围成四边形(如图阴影部分)的面积为15(km2),设BP=x(km),BQ=y(km),
(1)试写出y关于x的函数关系式,并求出x的取值范围;
(2)若B为公园入口,P,Q为观光车站,观光车站P位于线段AB靠近入口B的一侧.经测算,每天由B入口至观光车站P,Q乘坐观光车的游客数量相等,均为1万人,问如何确定观光车站P,Q的位置,使所有游客步行距离之和最大,并求出最大值.

查看答案和解析>>

同步练习册答案