【题目】已知函数.
(Ⅰ)若在定义域内单调递增,求的取值范围;
(Ⅱ)若存在极大值点,证明:.
【答案】(Ⅰ);(Ⅱ)证明见解析
【解析】
(Ⅰ)求出导函数,由恒成立,分离参数后转化为求新函数()的最值.
(Ⅱ)由(Ⅰ)知,利用单调性计算的零点,得的极大值点,再研究函数值证得结论.
解:(Ⅰ)在定义域内单调递增,
在恒成立,即在恒成立.
令,,则,当时,;当时,;
在上单调递减,上单调递增
.
,的取值范围是.
(Ⅱ)存在极大值点,至少存在一个零点,由(Ⅰ)知,.
即函数的图像与直线至少存在一个交点,
由(Ⅰ)知,在上单调递减,上单调递增,,
取,,在上存在一个零点.
由(Ⅰ)知,当时,在上单调递增,,即,,
取,,在上存在一个零点,
即在上单调递增,在上单调递减,在上单调递增.
,且,即.
,即.
科目:高中数学 来源: 题型:
【题目】双曲线C的渐近线方程为,一个焦点为F(0,﹣8),则该双曲线的标准方程为_____.已知点A(﹣6,0),若点P为C上一动点,且P点在x轴上方,当点P的位置变化时,△PAF的周长的最小值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱台的下底面是边长为2的正三角形,上地面是边长为1的正三角形.在下底面的射影为的重心,且.
(1)证明:平面;
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点、以轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,若直线与曲线交于、两点.
(1)求线段的中点的直角坐标;
(2)设点是曲线上任意一点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是九江市2019年4月至2020年3月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r=0.83,则下列结论错误的是( )
A.每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关
B.月温差(月最高气温﹣月最低气温)的最大值出现在10月
C.9﹣12月的月温差相对于5﹣8月,波动性更大
D.每月最高气温与最低气温的平均值在前6个月逐月增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,,,.以,为邻边作平行四边形,连接和.
(1)求证:平面;
(2)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,在四边形ABCD中,∠ABC=,AB=4,BC=3,CD=,AD=2,PA=4.
(1)证明:CD⊥平面PAD;
(2)求二面角B-PC-D的余弦值..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程与曲线的直角坐标方程;
(2)设、为曲线上位于第一,二象限的两个动点,且,射线,交曲线分别于点,.求面积的最小值,并求此时四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com