½â£ºÓÉÌâÒâÖª£º
£¨I£©¡ßA={1£¬2£¬¡£¬2
n-1£¬¡}£¬A¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳Ðò¼ÇΪ{c
n}£¬ÇÒc
n=n£¬n¡ÊN
*£»
¡ßÈôc
n=n£¬ÒòΪ5£¬6£¬7∉A£¬Ôò5£¬6£¬7¡ÊB
¡àµÈ²îÊýÁÐ{b
n}µÄ¹«²îΪ1£¬²¢ÇÒ3ÊÇÊýÁÐ{b
n}ÖеÄÏÒò´Ë£¬3Ö»¿ÉÄÜÊÇÊýÁÐ{b
n}ÖеĵÚ1£¬2£¬3Ï
µ±b
1=3ʱ£¬Ôòb
n=n+2£»
µ±b
2=3£¬Ôòb
n=n+1£»
µ±b
3=3£¬Ôòb
n=n£®
£¨II£©£¨i£©ÒòΪA={1£¬2£¬¡£¬2
n-1£¬¡}£¬A¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳Ðò¼ÇΪ{c
n}£¬
¶Ô¼¯ºÏ{c
n}ÖеÄÔªËØ2½øÐзÖÀàÌÖÂÛ£º
¢Ùµ±c
2=2ʱ£¬ÓÉ{c
n}µÄÇ°5Ïî³ÉµÈ±ÈÊýÁУ¬µÃc
4=2
3=8=c
9£¬ÏÔÈ»²»³ÉÁ¢£»
¢Úµ±c
3=2ʱ£¬ÓÉ{c
n}µÄÇ°5Ïî³ÉµÈ±ÈÊýÁУ¬µÃb
12=2£¬¡àb
1=
£»
Òò´ËÊýÁÐ{c
n}µÄÇ°5Ïî·Ö±ðΪ1£¬
£¬2£¬2
£¬4£»
ÕâÑù b
n=
n£¬ÔòÊýÁÐ{c
n}µÄÇ°9Ïî·Ö±ðΪ1£¬
£¬2£¬2
£¬4£¬3
£¬4
£¬5
£¬8£»ÉÏÊöÊýÁзûºÏÒªÇó£»
¢Ûµ±c
k=2£¨k¡Ý4£©Ê±£¬ÓÐb
2-b
1£¼2-1£¬¼´ÊýÁÐ{b
n}µÄ¹«²îd£¼1£¬
¡àb
6=b
1+5d£¼2+5=7£¬1£¬2£¬4£¼c
9£»
¡à1£¬2£¬4ÔÚÊýÁÐ{c
n}µÄÇ°8ÏîÖУ¬ÓÉÓÚA¡ÉB=∅£¬ÕâÑù£¬b
1£¬b
2£¬¡£¬b
6ÒÔ¼°1£¬2£¬4¹²9Ï
ËüÃǾùСÓÚ8£¬¼´ÊýÁÐ{c
n}µÄÇ°9Ïî¾ùСÓÚ8£¬ÕâÓëc
9=8ì¶Ü£¬ËùÒÔÒ²²»³ÉÁ¢£»
×ÛÉÏËùÊö£¬b
n=
n£»
Æä´Î£¬µ±n¡Ü4ʱ£¬
=
£¾
£¬
=
£¼
£¬
=
£¾
£¬
µ±n¡Ý7ʱ£¬c
n¡Ý4
£¬ÒòΪ{b
n}Êǹ«²îΪ
µÄµÈ²îÊýÁУ¬ËùÒÔ c
n+1-c
n¡Ü
£¬
ËùÒÔ
=
=1+
¡Ü1+
=
£¬´ËʱµÄn²»·ûºÏÒªÇó£®
ËùÒÔ·ûºÏÒªÇóµÄnÒ»¹²ÓÐ5¸ö£®
£¨ii£©Ö¤Ã÷£ºÓÉ£¨i£©Öª£¬ÊýÁÐ{c
n}ÊÇA¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳ÐòÅÅÁÐËùµÃ£º
¼´1£¬
£¬2£¬2
£¬4£¬3
£¬4
£¬5
£¬8£¬¡£¬
¶ÔÓÚÕýÕûÊý¶Ô£¨m£¬n£©£¬µ±m¡Ùnʱ£¬ÓÐc
m¡Ùc
n£»
¡à|c
n+1+c
m-c
n-c
m+1|£¾0£¬
ÓÉ|c
n+1+c
m-c
n-c
m+1|=|£¨c
n+1-c
n£©-£¨c
m+1-c
m£©|¡Ü|c
n+1-c
n|+|c
m+1-c
m|¡Ü2|c
n+1-c
n|=2|
n¡ä-2
n-1|£¬
Áî2|
n¡ä-2
n-1|£¼
£¬Ôò|
n¡ä-2
n-1|£¼
£®
¡à´æÔÚÎÞÇî¶à×éÕýÕûÊý¶Ô£¨m£¬n£©Ê¹µÃ²»µÈʽ
³ÉÁ¢£®
·ÖÎö£º£¨I£©¸ù¾ÝÒÑÖªÊýÁÐ{a
n}µÄͨÏʽa
n=2
n-1£¬ÊýÁÐ{b
n}ÊǵȲîÊýÁУ¬¼¯ºÏA¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳ÐòÅÅÁй¹³ÉµÄÊýÁмÇΪ{c
n}£®Èôc
n=n£¬n¡ÊN*£¬¶ÔÔªËØ3¡¢5¡¢6¡¢7½øÐзÖÎö£¬µÃ³öÊýÁÐ{b
n}Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬·ÖÀàÇó³ö¼´¿É£®
£¨II£©£¨i£©ÈôA¡ÉB=∅£¬ÊýÁÐ{c
n}µÄÇ°5Ïî³ÉµÈ±ÈÊýÁУ¬ÇÒc
1=1£¬c
9=8£¬¶ÔÔªËØ2½øÐзÖÀàÌÖÂÛ£¬´Ó¶øÇóµÃ
£¾
µÄÕýÕûÊýnµÄ¸öÊý£®
£¨ii£©ÓÉ£¨i£©Öª£¬ÊýÁÐ{c
n}ÊÇA¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳ÐòÅÅÁÐËùµÃ£º¼´1£¬
£¬2£¬2
£¬4£¬3
£¬4
£¬5
£¬8£¬¡£¬È»ºóÀûÓþø¶ÔÖµ²»µÈʽ½øÐÐÖ¤Ã÷¼´¿É£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеÄ×ÛºÏÔËÓ㬶ÔÔªËØ2²ÉÓ÷ÖÀàÌÖÂ۵ķ½·¨ÇóµÃÊýÁÐ{b
n}µÄͨÏʽ£¬ÌåÏÖ·ÖÀàÌÖÂÛµÄ˼Ï룻¶ÔÓÚ£¨II£©µÄ̽ÌÖ£¬³ýÁË·ÖÀàÌÖÂÛÒÔÍ⣬»¹²ÉÓÃÁË·´Ö¤·¨½â¾öÎÊÌ⣬ÌåÏÖÁË·½·¨µÄÁé»îÐÔ£¬Ôö¼ÓÁËÌâÄ¿µÄÄѶȣ¬ÊôÄÑÌ⣮