ÒÑÖªÊýÁÐ{an}µÄͨÏʽÊÇan=2n-1£¬ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÁºÏA={a1£¬a2£¬¡­£¬an£¬¡­}£¬B={b1£¬b2£¬¡­£¬bn£¬¡­}£¬n¡ÊN*£®½«¼¯ºÏA¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳ÐòÅÅÁй¹³ÉµÄÊýÁмÇΪ{cn}£®
£¨I£©Èôcn=n£¬n¡ÊN*£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨II£©ÈôA¡ÉB=¦µ£¬ÇÒÊýÁÐ{cn}µÄÇ°5Ïî³ÉµÈ±ÈÊýÁУ¬c1=1£¬c9=8£®
£¨i£©ÇóÂú×ãÊýѧ¹«Ê½µÄÕýÕûÊýnµÄ¸öÊý£»
£¨ii£©Ö¤Ã÷£º´æÔÚÎÞÇî¶à×éÕýÕûÊý¶Ô£¨m£¬n£©Ê¹µÃ²»µÈʽÊýѧ¹«Ê½³ÉÁ¢£®

½â£ºÓÉÌâÒâÖª£º
£¨I£©¡ßA={1£¬2£¬¡­£¬2n-1£¬¡­}£¬A¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳Ðò¼ÇΪ{cn}£¬ÇÒcn=n£¬n¡ÊN*£»
¡ßÈôcn=n£¬ÒòΪ5£¬6£¬7∉A£¬Ôò5£¬6£¬7¡ÊB
¡àµÈ²îÊýÁÐ{bn}µÄ¹«²îΪ1£¬²¢ÇÒ3ÊÇÊýÁÐ{bn}ÖеÄÏÒò´Ë£¬3Ö»¿ÉÄÜÊÇÊýÁÐ{bn}ÖеĵÚ1£¬2£¬3Ï
µ±b1=3ʱ£¬Ôòbn=n+2£»
µ±b2=3£¬Ôòbn=n+1£»
µ±b3=3£¬Ôòbn=n£®
£¨II£©£¨i£©ÒòΪA={1£¬2£¬¡­£¬2n-1£¬¡­}£¬A¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳Ðò¼ÇΪ{cn}£¬
¶Ô¼¯ºÏ{cn}ÖеÄÔªËØ2½øÐзÖÀàÌÖÂÛ£º
¢Ùµ±c2=2ʱ£¬ÓÉ{cn}µÄÇ°5Ïî³ÉµÈ±ÈÊýÁУ¬µÃc4=23=8=c9£¬ÏÔÈ»²»³ÉÁ¢£»
¢Úµ±c3=2ʱ£¬ÓÉ{cn}µÄÇ°5Ïî³ÉµÈ±ÈÊýÁУ¬µÃb12=2£¬¡àb1=£»
Òò´ËÊýÁÐ{cn}µÄÇ°5Ïî·Ö±ðΪ1£¬£¬2£¬2£¬4£»
ÕâÑù bn=n£¬ÔòÊýÁÐ{cn}µÄÇ°9Ïî·Ö±ðΪ1£¬£¬2£¬2£¬4£¬3£¬4£¬5£¬8£»ÉÏÊöÊýÁзûºÏÒªÇó£»
¢Ûµ±ck=2£¨k¡Ý4£©Ê±£¬ÓÐb2-b1£¼2-1£¬¼´ÊýÁÐ{bn}µÄ¹«²îd£¼1£¬
¡àb6=b1+5d£¼2+5=7£¬1£¬2£¬4£¼c9£»
¡à1£¬2£¬4ÔÚÊýÁÐ{cn}µÄÇ°8ÏîÖУ¬ÓÉÓÚA¡ÉB=∅£¬ÕâÑù£¬b1£¬b2£¬¡­£¬b6ÒÔ¼°1£¬2£¬4¹²9Ï
ËüÃǾùСÓÚ8£¬¼´ÊýÁÐ{cn}µÄÇ°9Ïî¾ùСÓÚ8£¬ÕâÓëc9=8ì¶Ü£¬ËùÒÔÒ²²»³ÉÁ¢£»
×ÛÉÏËùÊö£¬bn=n£»
Æä´Î£¬µ±n¡Ü4ʱ£¬=£¾£¬=£¼£¬=£¾£¬
µ±n¡Ý7ʱ£¬cn¡Ý4£¬ÒòΪ{bn}Êǹ«²îΪµÄµÈ²îÊýÁУ¬ËùÒÔ cn+1-cn¡Ü£¬
ËùÒÔ==1+¡Ü1+=£¬´ËʱµÄn²»·ûºÏÒªÇó£®
ËùÒÔ·ûºÏÒªÇóµÄnÒ»¹²ÓÐ5¸ö£®
£¨ii£©Ö¤Ã÷£ºÓÉ£¨i£©Öª£¬ÊýÁÐ{cn}ÊÇA¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳ÐòÅÅÁÐËùµÃ£º
¼´1£¬£¬2£¬2£¬4£¬3£¬4£¬5£¬8£¬¡­£¬
¶ÔÓÚÕýÕûÊý¶Ô£¨m£¬n£©£¬µ±m¡Ùnʱ£¬ÓÐcm¡Ùcn£»
¡à|cn+1+cm-cn-cm+1|£¾0£¬
ÓÉ|cn+1+cm-cn-cm+1|=|£¨cn+1-cn£©-£¨cm+1-cm£©|¡Ü|cn+1-cn|+|cm+1-cm|¡Ü2|cn+1-cn|=2|n¡ä-2n-1|£¬
Áî2|n¡ä-2n-1|£¼£¬Ôò|n¡ä-2n-1|£¼£®
¡à´æÔÚÎÞÇî¶à×éÕýÕûÊý¶Ô£¨m£¬n£©Ê¹µÃ²»µÈʽ³ÉÁ¢£®
·ÖÎö£º£¨I£©¸ù¾ÝÒÑÖªÊýÁÐ{an}µÄͨÏʽan=2n-1£¬ÊýÁÐ{bn}ÊǵȲîÊýÁУ¬¼¯ºÏA¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳ÐòÅÅÁй¹³ÉµÄÊýÁмÇΪ{cn}£®Èôcn=n£¬n¡ÊN*£¬¶ÔÔªËØ3¡¢5¡¢6¡¢7½øÐзÖÎö£¬µÃ³öÊýÁÐ{bn}Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬·ÖÀàÇó³ö¼´¿É£®
£¨II£©£¨i£©ÈôA¡ÉB=∅£¬ÊýÁÐ{cn}µÄÇ°5Ïî³ÉµÈ±ÈÊýÁУ¬ÇÒc1=1£¬c9=8£¬¶ÔÔªËØ2½øÐзÖÀàÌÖÂÛ£¬´Ó¶øÇóµÃ £¾µÄÕýÕûÊýnµÄ¸öÊý£®
£¨ii£©ÓÉ£¨i£©Öª£¬ÊýÁÐ{cn}ÊÇA¡ÈBÖеÄÔªËØ°´´ÓСµ½´óµÄ˳ÐòÅÅÁÐËùµÃ£º¼´1£¬£¬2£¬2£¬4£¬3£¬4£¬5£¬8£¬¡­£¬È»ºóÀûÓþø¶ÔÖµ²»µÈʽ½øÐÐÖ¤Ã÷¼´¿É£®
µãÆÀ£º±¾Ì⿼²éÁ˵ȲîÊýÁк͵ȱÈÊýÁеÄ×ÛºÏÔËÓ㬶ÔÔªËØ2²ÉÓ÷ÖÀàÌÖÂ۵ķ½·¨ÇóµÃÊýÁÐ{bn}µÄͨÏʽ£¬ÌåÏÖ·ÖÀàÌÖÂÛµÄ˼Ï룻¶ÔÓÚ£¨II£©µÄ̽ÌÖ£¬³ýÁË·ÖÀàÌÖÂÛÒÔÍ⣬»¹²ÉÓÃÁË·´Ö¤·¨½â¾öÎÊÌ⣬ÌåÏÖÁË·½·¨µÄÁé»îÐÔ£¬Ôö¼ÓÁËÌâÄ¿µÄÄѶȣ¬ÊôÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄͨÏîΪan=2n-1£¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬Áîbn=
1
Sn+n
£¬ÔòÊýÁÐ{bn}µÄÇ°nÏîºÍµÄÈ¡Öµ·¶Î§Îª£¨¡¡¡¡£©
A¡¢[
1
2
£¬1)
B¡¢(
1
2
£¬1)
C¡¢[
1
2
£¬
3
4
)
D¡¢[
2
3
£¬1)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄͨÏʽÊÇan=
an
bn+1
£¬ÆäÖÐa¡¢b¾ùΪÕý³£Êý£¬ÄÇôÊýÁÐ{an}µÄµ¥µ÷ÐÔΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2003•¶«³ÇÇø¶þÄ££©ÒÑÖªÊýÁÐ{an}µÄͨÏʽÊÇ an=
na
(n+1)b
£¬ÆäÖÐa¡¢b¾ùΪÕý³£Êý£¬ÄÇô anÓë an+1µÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=2n-5£¬Ôò|a1|+|a2|+¡­+|a10|=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=
1
n+1
+
n
ÇóËüµÄÇ°nÏîµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸