精英家教网 > 高中数学 > 题目详情
2、一动圆与圆x2+y2+6x+5=0及圆x2+y2-6x-91=0都内切,则动圆圆心的轨迹是(  )
分析:设动圆的半径为r,由相切关系建立圆心距与r的关系,进而得到关于圆心距的等式,结合椭圆的定义即可解决问题.
解答:解:x2+y2+6x+5=0配方得:(x+3)2+y2=4;x2+y2-6x-91=0配方得:(x-3)2+y2=100;
设动圆的半径为r,动圆圆心为P(x,y),
因为动圆与圆A:x2+y2+6x+5=0及圆B:x2+y2-6x-91=0都内切,
则PA=r-2,PB=10-r.
∴PA+PB=8>AB=6
因此点的轨迹是焦点为A、B,中心在( 0,0)的椭圆.
故选A.
点评:本题主要考查了轨迹方程.当动点的轨迹满足某种曲线的定义时,就可由曲线的定义直接写出轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一动圆与圆x2+y2=1外切,而与圆x2+y2-6x+8=0内切,则动圆圆心的轨迹是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,则动圆圆心M的轨迹方程是
x2
36
+
y2
27
=1
x2
36
+
y2
27
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

一动圆与圆x2+y2=1外切,而与圆x2+y2-6x+8=0内切,那么动圆的圆心的轨迹是(    )

A.双曲线的一支             B.椭圆

C.抛物线                      D.圆

查看答案和解析>>

同步练习册答案