精英家教网 > 高中数学 > 题目详情

【题目】下表是检测某种浓度的农药随时间x(秒)渗入某种水果表皮深度y(微米)的一组结果.

时间x(秒)

5

10

15

20

30

深度y(微米)

6

10

10

13

16


(1)在规定的坐标系中,画出 x,y 的散点图;
(2)求y与x之间的回归方程,并预测40秒时的深度(回归方程精确到小数点后两位;预测结果精确到整数). 回归方程: =bx+a,其中 = ,a= ﹣b

【答案】
(1)解:在规定的坐标系中,画出 x,y 的散点图如图所示;
(2)解:计算 = ×(5+10+15+20+30)=16,

= ×(6+10+10+13+16)=11;

xiyi=5×6+10×10+15×10+20×13+30×16=1020,

=52+102+152+202+302=1650,

∴回归系数为: = = ≈0.53,

a= ﹣b =11﹣0.53×16=2.52;

∴回归方程为: =0.53x+2.52;

当x=40时, =0.53×40+2.52=23.72,

即预测40秒时的深度23.72微米.


【解析】(1)在规定的坐标系中,画出 x,y 的散点图即可;(2)计算 ,求出回归系数 、a,

写出回归方程,计算x=40时 的值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(I)若A,B两点的纵会标分别为 的值;
(II)已知点C是单位圆上的一点,且 的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2是椭圆 + =1的左、右焦点,O为坐标原点,点P(﹣1, )在椭圆上,线段PF2与y轴的交点M满足 + =
(1)求椭圆的标准方程;
(2)⊙O是以F1F2为直径的圆,一直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点A、B.当 =λ且满足 ≤λ≤ 时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体ABCD及其三视图如图1,2所示.

(1)求四面体ABCD的体积;
(2)若点E为棱BC的中点,求异面直线DE和AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的方程为:ax2+ay2﹣2a2x﹣4y=0(a≠0,a为常数).
(1)判断曲线C的形状;
(2)设曲线C分别与x轴、y轴交于点A、B(A、B不同于原点O),试判断△AOB的面积S是否为定值?并证明你的判断;
(3)设直线l:y=﹣2x+4与曲线C交于不同的两点M、N,且|OM|=|ON|,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=3sin(2x+φ)的图象关于点( ,0)成中心对称(|φ|< ),那么函数f(x)图象的一条对称轴是(
A.x=﹣
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf(x+T)对任意的x∈R成立,则称函数f(x)是Ω函数. (Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)
(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分
(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;
(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;
(Ⅲ)求证:当a>1时,函数f(x)=ax一定是Ω函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|3≤x≤7},B={x|2a<x<a+4}.
(1)当a=1时,求A∩B和A∪B;
(2)若A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过三个点A(4,1),B(6,﹣3),C(﹣3,0),则圆C的方程为

查看答案和解析>>

同步练习册答案