精英家教网 > 高中数学 > 题目详情
17.同时向上掷两枚骰子,向上的点数之和为5的概率是$\frac{1}{9}$.

分析 利用列举法得到同时向上掷两枚骰子,向上的点数之和共有36种结果,而向上的点数之和为5的结果有4种情况,由此能求出向上的点数之和等于5的概率为$\frac{1}{9}$.

解答 解:记“同时向上掷两枚骰子,向上的点数之和等于5”为事件A,
∵同时向上掷两枚骰子,向上的点数之和共有以下36种结果:
(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
而向上的点数之和为5的结果有(4,1),(3,2),(2,3),(1,4)等4种情况
∴P(A)=$\frac{4}{36}$=$\frac{1}{9}$.
故一颗骰子连续抛掷2次,向上的点数之和等于5的概率为$\frac{1}{9}$.
故答案为:$\frac{1}{9}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.直线ρsin(θ-$\frac{π}{6}$)=1化为直角坐标方程为$x-\sqrt{3}y+2$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中正确的是(  )
A.命题“?x0∈[-3,3],x02+2x0+1≤0”的否定是“?x∈(-∞,-3)∪(3,+∞),x2+2x+1>0”
B.命题“p∧q为真”是命题“p∨q为真”的必要不充分条件
C.已知a、b、c是实数,则“ac2>bc2”是“a>b”的充分条件
D.若m>0,则方程x2+x-m=0有实数根的否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=2sin(3x-$\frac{π}{4}$)的最小正周期是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{2}{{x}^{2}-2x+2}$(x∈R)
(1)证明:f(2-x)=f(x);
(2)若f(x)≤1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的方程x2+(m-3)x+m=0.
(1)若方程的一根大于2,一根小于2,求实数m的取值范围;
(2)若方程的两根都小于-2,求实数m的取值范围;
(3)若方程的一根在区间(-2,0)内,一根在区间(0,4)内,求实数m的取值范围;
(4)若方程的两根都在区间(0,2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知关于x的方程x2-ax+(a+3)=0有两个根都比-3大,则实数a的取值范围是{a|-3<a≤2,或a≥6}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若对任意的x≥1,不等式ln(1+$\frac{1}{x}$)≤$\frac{1}{x+a}$(a>-1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义“⊙”是一种运算,对于任意的x,y,都满足x⊙y=$\frac{xy}{2x+{y}^{2}}$,现已知条件2⊙a=b,当a是正数时b取最大值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案