精英家教网 > 高中数学 > 题目详情

下图是一几何体的直观图、正(主)视图、侧(左)视图、俯视图

(1)若的中点,求证平面
(2)求平面与平面所成的二面角(锐角)的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在四棱锥中,⊥平面,,,的中点.
(Ⅰ)证明:⊥平面
(Ⅱ)若直线与平面所成的角和与平面所成的角相等,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

、如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.
   

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,
总计耗用9.6米铁丝,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面)。
(Ⅰ)当圆柱底面半径取何值时,取得最大值?并求出该最大值(结果精确到0.01平方米);
(Ⅱ)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,在平面内,ABCD的菱形,都是正方形。将两个正方形分别沿AD,CD折起,使重合于点D1。设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧,设(图2)。

(1)设二面角E – AC – D1的大小为q,若,求的取值范围;
(2)在线段上是否存在点,使平面平面,若存在,求出所成的比;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,D,E分别为三棱锥P—ABC的棱AP、AB上的点,且AD:DP=AE:EB=1:3.求证:DE//平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设圆台的高为3,其轴截面(过圆台轴的截面)如图
所示,母线A1A底面圆的直径AB的夹角为,在轴截面中
A1BA1A,求圆台的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如下图(2),建造一个容积为,深为,宽为的长方体无盖水池,如果池底的造价为,池壁的造价为,求水池的总造价。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

((本小题满分12分)
如图,多面体ABCD—EFG中,底面ABCD为正方形,GD//FC//AE,AE⊥平面ABCD,其正视图、俯视图如下:

(I)求证:平面AEF⊥平面BDG;
(II)若存在使得,二面角A—BG—K的大小为,求的值。

查看答案和解析>>

同步练习册答案