精英家教网 > 高中数学 > 题目详情
某工厂拟建一座平面图为矩形,面积为200m2的三段式污水处理池,池高为1m,如果池的四周墙壁的建造费单价为400元/m2,池中的每道隔墙厚度不计,面积只计一面,隔墙的建造费单价为248元/m2,池底的建造费单价为80元/m2,则水池的长、宽分别为多少米时,污水池的造价最低?最低造价为多少元?
分析:设出污水处理水池的宽为xm,则长为
200
x
m,表示出水池的造价,利用基本不等式求最值,即可得出结论.
解答:解:设污水处理水池的宽为xm,则长为
200
x
m
设水池的造价为y元,则由题意y=80×200+x×400×2+
200
x
×400×2
+x×248×2
=16000+1296x+
160000
x
≥16000+2
1296x•
160000
x
=44800,
当且仅当1296x=
160000
x
,即x=
100
9
时,取“=”,此时长为18m.
答:水池的长、宽分别为18m,
100
9
m时,污水池的造价最低,最低造价为44800元.
点评:本题考查利用数学知识解决实际问题,考查基本不等式的运用,确定函数模型是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某工厂拟建一座平面图(如图所示)为矩形且面积为200m2的三级污水处理池,由于地形限制,长、宽都不能超过16m.如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).
(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域;
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂拟建一座平面图为矩形且面积为400平方米的三级污水处理池,平面图如图所示,池外圈建造单价为每米200元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的厚度忽略不计且池无盖).若受场地限制,长与宽都不能超过25米,则污水池的最低造价为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂拟建一座平面图为矩形,面积为200m2,高度一定的三段污水处理池(如图).由于受地形限制,其长、宽都不能超过16m,如果池的外壁的建造费单价为400元/m,池中两道隔墙的建造费单价为248元/m,池底的建造费单价为80元/m2,试设计水池的长x和宽y(x>y),使总造价最低,并求出这个最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂拟建一座平面图(如下图)为矩形且面积为200平方米的三级污水处理池,由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).

 (1)写出总造价y(元)与污水处理池长x(米)的函数关系式,并指出其定义域.

(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求最低总造价.

查看答案和解析>>

同步练习册答案