精英家教网 > 高中数学 > 题目详情
16.解方程:|x-5|+$\sqrt{{(4-x)}^{2}}$=1.

分析 根据二次根式和绝对值的定义,分段讨论解得即可.

解答 解:|x-5|+$\sqrt{{(4-x)}^{2}}$=1.
当x≤4时,原方程化为:5-x+4-x=1,解得x=4,
当4<x<5时,原方程化为:5-x+x-4=1,x为任意数,
当x≥5时,原方程化为x-5+x-4=1,解得x=5,
所以原方程的解为4≤x≤5.

点评 本题考查了含所有绝对值的方程的解法,关键是分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知DA⊥平面ABC,∠ABC=90°,AD=AB,AM⊥DC于M,N为BD的中点.求证:MN⊥DC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=x2+4ax-4a-a2,有f(4-x)=f(x),求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2+2x+6,x∈[t,t+1],求最大和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax2+8x+3(a<0),对于给定的负数a,有一个最大的正数l(a),使得在区间[0,l(a)]上,不等式|f(x)|≤5都成立,求l(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用1到9这9个数字,可以组成多少个没有重复数字的三位偶数?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=sin(2x+$\frac{π}{4}$)+cos(2x+$\frac{π}{4}$)的单调递减区间为[kπ,k$π+\frac{π}{2}$],k∈Z,其图象关于直线x=$\frac{kπ}{2}$,k∈Z对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-$\sqrt{3}$sin2x+sinxcosx
(1)求f($\frac{π}{6}$)的值;
(2)求f(x)的最小正周期;
(3)求函数f(x)的最大值,并写出f(x)取最大时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{a}$=(cosα,sinα),|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案