精英家教网 > 高中数学 > 题目详情
已知
m
=(sinωx+cosωx,2sinωx),
n
=(cosωx-sinωx,
3
cosωx),(ω>0),若f(x)=
m
n
f(
π
3
-x)=f(x)
,f(x)在(0,
π
3
)内有最大值无最小值.
(1)求f(x)的最小正周期;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=1,其面积S△ABC=
3
,求△ABC周长的最小值.
分析:(1)化简f(x)=
m
n
的解析式为2sin(2ωx+
π
6
),根据 f(
π
3
-x)=f(x)
,求出ω=1,可得周期T的值.
(2)根据f(A)=1,求得A=
π
3
,再由S△ABC=
1
2
bc•sinA=
3
,求得 bc 的值,再利用基本不等式求出△ABC周长的最小值.
解答:解:(1)∵f(x)=
m
n
=(sinωx+cosωx)(cosωx-sinωx)+2sinωx•
3
cosωx=cos2ωx+
3
 sin2ωx=2sin(2ωx+
π
6
).
f(
π
3
-x)=f(x)
,∴2ω•
π
6
+
π
6
=2kπ+
π
2
,从而ω=6k+1,k∈z.
π
3
-
π
6
π
,∴ω≤3,因此 k=0,ω=1,∴T=
ω
=π.
(2)∵f(A)=1,∴2sin(2A+
π
6
)=1,∴A=
π
3
,S△ABC=
1
2
bc•sinA=
3
,∴bc=4,
∴△ABC周长为 b+c+a=b+c+
b2+c2 -2bc•cosA
≥2
bc
+
2bc -2bc•cosA
=6,当且仅当b=c时等号成立.
故△ABC周长的最小值为6.
点评:本题主要考查两个向量的数量积的运算,正弦定理和基本不等式的应用,三角函数的周期性以及求法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(sinωx+cosωx,
3
cosωx),
n
=(cosωx-sinωx,2sibωx),且ω>0,设f(x)=
m
n
,f(x)的图象相邻两对称轴之间的距离等于
π
2

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,b+c=4,f(A)=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(ωx+?),2)
b
=(1,cos(ωx+?))
(ω>0,0<?<
π
2
)
.函数f(x)=(
a
+
b
)•(
a
-
b
)
的图象的相邻两对称轴之间的距离为2,且过点M(1,
7
2
)

(1)求f(x)的表达式;
(2)求f(1)+f(2)+f(3)+…+f(2009)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黄埔区一模)已知函数y=sin(ωx+
π
3
)(ω>0)
的最小正周期为π,若将该函数的图象向左平移m(m>0)个单位后,所得图象关于原点对称,则m的最小值为
π
3
π
3

查看答案和解析>>

同步练习册答案