精英家教网 > 高中数学 > 题目详情
等差数列中{an}中,a10=30,a20=50;
(1)求a1,d;
(2)求通项公式an
(3)若Sn=242,求n.
分析:(1)由等差数列的通项公式可得,
a1+9d=30
a1+19d=50
,从而可求a1,d
(2)由(1)结合等差数列的通项公式可求an
(3)由等差数列的求和公式可得,Sn=
12+2n+10
2
×n=242
,解可求n的值
解答:解:(1)由等差数列的通项公式可得,
a1+9d=30
a1+19d=50

∴a1=12,d=2   
(2)由(1)可得,an=2n+10  
(3)Sn=
12+2n+10
2
×n=242

∴n=11
点评:本题主要考查了等差数列的通项公式及前n项和公式的应用,解题的关键是熟练应用公式,属于基础试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•上海模拟)以下有四个命题:
①一个等差数列{an}中,若存在ak+1>ak>O(k∈N),则对于任意自然数n>k,都有an>0;
②一个等比数列{an}中,若存在ak<0,ak+1<O(k∈N),则对于任意n∈N,都有an<0;
③一个等差数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<O;
④一个等比数列{an}中,若存在自然数k,使ak•ak+1<0,则对于任意n∈N,都有an.an+1<0;
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

以下有四个命题:
①一个等差数列{an}中,若存在ak+1>ak>O(k∈N),则对于任意自然数n>k,都有an>0;
②一个等比数列{an}中,若存在ak<0,ak+1<O(k∈N),则对于任意n∈N,都有an<0;
③一个等差数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<O;
④一个等比数列{an}中,若存在自然数k,使ak•ak+1<0,则对于任意n∈N,都有an.an+1<0;
其中正确命题的个数是


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    3个

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:单选题

以下有四个命题:
①一个等差数列{an}中,若存在ak+1>ak>O(k∈N),则对于任意自然数n>k,都有an>0;
②一个等比数列{an}中,若存在ak<0,ak+1<O(k∈N),则对于任意n∈N,都有an<0;
③一个等差数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<O;
④一个等比数列{an}中,若存在自然数k,使ak•ak+1<0,则对于任意n∈N,都有an.an+1<0;
其中正确命题的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:2009-2010学年上海市十三校高三(下)第二次联考数学试卷(文科)(解析版) 题型:选择题

以下有四个命题:
①一个等差数列{an}中,若存在ak+1>ak>O(k∈N),则对于任意自然数n>k,都有an>0;
②一个等比数列{an}中,若存在ak<0,ak+1<O(k∈N),则对于任意n∈N,都有an<0;
③一个等差数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<O;
④一个等比数列{an}中,若存在自然数k,使ak•ak+1<0,则对于任意n∈N,都有an.an+1<0;
其中正确命题的个数是( )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源:2009-2010年上海市华东师大二附中高三数学综合练习试卷(08)(解析版) 题型:选择题

以下有四个命题:
①一个等差数列{an}中,若存在ak+1>ak>O(k∈N),则对于任意自然数n>k,都有an>0;
②一个等比数列{an}中,若存在ak<0,ak+1<O(k∈N),则对于任意n∈N,都有an<0;
③一个等差数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<O;
④一个等比数列{an}中,若存在自然数k,使ak•ak+1<0,则对于任意n∈N,都有an.an+1<0;
其中正确命题的个数是( )
A.0个
B.1个
C.2个
D.3个

查看答案和解析>>

同步练习册答案